Skip to main content

Biomathematical Modeling of DLGG Behavior

  • Chapter
  • First Online:
Diffuse Low-Grade Gliomas in Adults
  • 1260 Accesses

Abstract

In this chapter, we review recent advances in biomathematical modeling of glioma growth, based on the proliferation-diffusion equation. We show how the computational simulations from this equation can be compared with real tumor evolution on MRI and how these simulations progressively integrate more realistic anatomical knowledge, improving the accuracy of the virtual tumor evolution. The Achilles’ heel of this model comes from the lack of quantitative relation between cell density and abnormal signal on conventional MRI, although future methods could overcome this limitation by taking advantage of multimodal sequences. In its simplified version, the model offers a practical way to monitor tumor dynamics, by estimating the velocity of the tumor front. We also envision applications to the management of DLGG, regarding model-based personalization of treatment sequence and evaluation of treatment efficacy in clinical studies. Finally, we propose a three-pathway model of malignant progression. One of these pathways has been recently mathematically modeled by the proliferation-invasion-hypoxia-necrosis-angiogenesis (PIHNA) system of equations. We show how this model leads to the important concept of kinetic grade, which is complementary to the usual histological grade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angelini ED, Clatz O, Mandonnet E, Konukoglu E, Capelle L, Duffau H. Glioma dynamics and computational models: a review of segmentation, registration, and in silico growth algorithms and their clinical applications. Curr Med Imag Rev. 2007;3(4):425–37.

    Article  Google Scholar 

  2. Burgess PK, Kulesa PM, Murray JD, Alvord Jr EC. The interaction of growth rates and diffusion coefficients in a three-dimensional mathematical model of gliomas. J Neuropathol Exp Neurol. 1997;56(6):704–13.

    PubMed  CAS  Google Scholar 

  3. Clatz O, Sermesant M, Bondiau PY, Delingette H, Warfield SK, Malandain G, Ayache N. Realistic simulation of the 3-D growth of brain tumors in MR images coupling diffusion with biomechanical deformation. IEEE Trans Med Imaging. 2005;24(10):1334–46.

    Article  PubMed  Google Scholar 

  4. Ellingson BM, Malkin MG, Rand SD, Connelly JM, Quinsey C, LaViolette PS, Bedekar DP, Schmainda KM. Validation of functional diffusion maps (fDMs) as a biomarker for human glioma cellularity. J Magn Reson Imaging. 2010;31(3):538–48.

    Article  PubMed  Google Scholar 

  5. Ellingson BM, LaViolette PS, Rand SD, Malkin MG, Connelly JM, Mueller WM, Prost RW, Schmainda KM. Spatially quantifying microscopic tumor invasion and proliferation using a voxel-wise solution to a glioma growth model and serial diffusion MRI. Magn Reson Med. 2011;65(4):1131–43.

    Article  PubMed  Google Scholar 

  6. Ganslandt O, Stadlbauer A, Fahlbusch R, Kamada K, Buslei R, Blumcke I, Nimsky C, Moser E. Proton magnetic resonance spectroscopic imaging integrated into image-guided surgery: correlation to standard magnetic resonance imaging and tumor cell density. Neurosurgery. 2005;56(2 Suppl):291–8; discussion 291–8.

    Article  PubMed  Google Scholar 

  7. Gerin C, Pallud J, Grammaticos B, Mandonnet E, Deroulers C, Varlet P, Capelle L, Taillandier L, Bauchet L, Duffau H, Badoual M. Improving the time-machine: estimating date of birth of grade II gliomas. Cell Prolif. 2011;45(1):76–90.

    Article  PubMed  Google Scholar 

  8. Harpold HL, Alvord Jr EC, Swanson KR. The evolution of mathematical modeling of glioma proliferation and invasion. J Neuropathol Exp Neurol. 2007;66(1):1–9.

    Article  PubMed  Google Scholar 

  9. Ius T, Angelini E, Thiebautde Schotten M, Mandonnet E, Duffau H. Evidence for potentials and limitations of brain plasticity using an atlas of functional resectability of WHO grade II gliomas: towards a “minimal common brain”. Neuroimage. 2011;56(3):992–1000.

    Article  PubMed  Google Scholar 

  10. Jbabdi S, Mandonnet E, Duffau H, Capelle L, Swanson KR, Pelegrini-Issac M, Guillevin R, Benali H. Simulation of anisotropic growth of low-grade gliomas using diffusion tensor imaging. Magn Reson Med. 2005;54(3):616–24.

    Article  PubMed  Google Scholar 

  11. Konukoglu E, Clatz O, Menze BH, Stieltjes B, Weber MA, Mandonnet E, Delingette H, Ayache N. Image guided personalization of reaction-diffusion type tumor growth models using modified anisotropic eikonal equations. IEEE Trans Med Imaging. 2010;29(1):77–95.

    Article  PubMed  Google Scholar 

  12. Mandonnet E, Capelle L, Duffau H. Extension of paralimbic low grade gliomas: toward an anatomical classification based on white matter invasion patterns. J Neurooncol. 2006;78(2):179–85.

    Article  PubMed  Google Scholar 

  13. Mandonnet E, Jbabdi S, Taillandier L, Galanaud D, Benali H, Capelle L, Duffau H. Preoperative estimation of residual volume for WHO grade II glioma resected with intraoperative functional mapping. Neuro Oncol. 2007;9(1):63–9.

    Article  PubMed  Google Scholar 

  14. Mandonnet E, Pallud J, Clatz O, Taillandier L, Konukoglu E, Duffau H, Capelle L. Computational modeling of the WHO grade II glioma dynamics: principles and applications to management paradigm. Neurosurg Rev. 2008;31(3):263–9.

    Article  PubMed  Google Scholar 

  15. Mandonnet E, Duffau H, Bauchet L. A new tool for grade II glioma studies: plotting cumulative time with quality of life versus time to malignant transformation. J Neurooncol. 2011;106(1):213–5.

    Article  PubMed  Google Scholar 

  16. McKnight TR, Lamborn KR, Love TD, Berger MS, Chang S, Dillon WP, Bollen A, Nelson SJ. Correlation of magnetic resonance spectroscopic and growth characteristics within Grades II and III gliomas. J Neurosurg. 2007;106(4):660–6.

    Article  PubMed  CAS  Google Scholar 

  17. Menze BH, Van Leemput K, Honkela A, Konukoglu E, Weber MA, Ayache N, Golland P. A generative approach for image-based modeling of tumor growth. Inf Process Med Imaging. 2011;22:735–47.

    Article  PubMed  Google Scholar 

  18. Ozturk-Isik E, Pirzkall A, Lamborn KR, Cha S, Chang SM, Nelson SJ. Spatial characteristics of newly diagnosed grade 3 glioma assessed by magnetic resonance metabolic and diffusion tensor imaging. Transl Oncol. 2012;5(1):10–8.

    PubMed  Google Scholar 

  19. Pallud J, Mandonnet E, Duffau H, Kujas M, Guillevin R, Galanaud D, Taillandier L, Capelle L. Prognostic value of initial magnetic resonance imaging growth rates for World Health Organization grade II gliomas. Ann Neurol. 2006;60(3):380–3.

    Article  PubMed  Google Scholar 

  20. Pallud J, Llitjos JF, Dhermain F, Varlet P, Dezamis E, Devaux B, Souillard-Scemama R, Sanai N, Koziak M, Page P, Schlienger M, Daumas-Duport C, Meder JF, Oppenheim C, Roux FX. Dynamic imaging response following radiation therapy predicts long-term outcomes for diffuse low-grade gliomas. Neuro Oncol. 2012;14(4):496–505.

    Article  PubMed  Google Scholar 

  21. Peyre M, Cartalat-Carel S, Meyronet D, Ricard D, Jouvet A, Pallud J, Mokhtari K, Guyotat J, Jouanneau E, Sunyach MP, Frappaz D, Honnorat J, Ducray F. Prolonged response without prolonged chemotherapy: a lesson from PCV chemotherapy in low-grade gliomas. Neuro Oncol. 2010;12(10):1078–82.

    Article  PubMed  Google Scholar 

  22. Ribba B, Kaloshi G, Peyre M, Ricard D, Calvez V, Tod M, Čajavec-Bernard B, Idbaih A, Psimaras D, Dainese L, Pallud J, Cartalat-Carel S, Delattre JY, Honnorat J, Grenier E, Ducray F. A tumor growth inhibition model for low-grade glioma treated with chemotherapy or radiotherapy. Clin Cancer Res. 2012;18(18):5071–80.

    Article  PubMed  CAS  Google Scholar 

  23. Ricard D, Kaloshi G, Amiel-Benouaich A, Lejeune J, Marie Y, Mandonnet E, Kujas M, Mokhtari K, Taillibert S, Laigle-Donadey F, Carpentier AF, Omuro A, Capelle L, Duffau H, Cornu P, Guillevin R, Sanson M, Hoang-Xuan K, Delattre JY. Dynamic history of low-grade gliomas before and after temozolomide treatment. Ann Neurol. 2007;61(5):484–90.

    Article  PubMed  CAS  Google Scholar 

  24. Stadlbauer A, Ganslandt O, Buslei R, Hammen T, Gruber S, Moser E, Buchfelder M, Salomonowitz E, Nimsky C. Gliomas: histopathologic evaluation of changes in directionality and magnitude of water diffusion at diffusion-tensor MR imaging. Radiology. 2006;240(3):803–10.

    Article  PubMed  Google Scholar 

  25. Swanson KR, Alvord Jr EC, Murray JD. A quantitative model for differential motility of gliomas in grey and white matter. Cell Prolif. 2000;33(5):317–29.

    Article  PubMed  CAS  Google Scholar 

  26. Swanson KR, Alvord Jr EC, Murray JD. Virtual resection of gliomas: effect of extent of resection on recurrence. Math Comput Model. 2003;37:1177–90.

    Article  Google Scholar 

  27. Swanson KR, Bridge C, Murray JD, Alvord Jr EC. Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion. J Neurol Sci. 2003;216(1):1–10.

    Article  PubMed  Google Scholar 

  28. Swanson KR, Rockne RC, Claridge J, Chaplain MA, Alvord Jr EC, Anderson AR. Quantifying the role of angiogenesis in malignant progression of gliomas: in silico modeling integrates imaging and histology. Cancer Res. 2011;71(24):7366–75.

    Article  PubMed  CAS  Google Scholar 

  29. Tracqui P, Cruywagen GC, Woodward DE, Bartoo GT, Murray JD, Alvord Jr EC. A mathematical model of glioma growth: the effect of chemotherapy on spatio-temporal growth. Cell Prolif. 1995;28(1):17–31.

    Article  PubMed  CAS  Google Scholar 

  30. Wang CH, Rockhill JK, Mrugala M, Peacock DL, Lai A, Jusenius K, Wardlaw JM, Cloughesy T, Spence AM, Rockne R, Alvord Jr EC, Swanson KR. Prognostic significance of growth kinetics in newly diagnosed glioblastomas revealed by combining serial imaging with a novel biomathematical model. Cancer Res. 2009;69(23):9133–40.

    Article  PubMed  CAS  Google Scholar 

  31. Woodward DE, Cook J, Tracqui P, Cruywagen GC, Murray JD, Alvord Jr EC. A mathematical model of glioma growth: the effect of extent of surgical resection. Cell Prolif. 1996;29(6):269–88.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Mandonnet MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Mandonnet, E. (2013). Biomathematical Modeling of DLGG Behavior. In: Duffau, H. (eds) Diffuse Low-Grade Gliomas in Adults. Springer, London. https://doi.org/10.1007/978-1-4471-2213-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2213-5_28

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2212-8

  • Online ISBN: 978-1-4471-2213-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics