Biomathematical Modeling of DLGG Behavior

  • Emmanuel MandonnetEmail author


In this chapter, we review recent advances in biomathematical modeling of glioma growth, based on the proliferation-diffusion equation. We show how the computational simulations from this equation can be compared with real tumor evolution on MRI and how these simulations progressively integrate more realistic anatomical knowledge, improving the accuracy of the virtual tumor evolution. The Achilles’ heel of this model comes from the lack of quantitative relation between cell density and abnormal signal on conventional MRI, although future methods could overcome this limitation by taking advantage of multimodal sequences. In its simplified version, the model offers a practical way to monitor tumor dynamics, by estimating the velocity of the tumor front. We also envision applications to the management of DLGG, regarding model-based personalization of treatment sequence and evaluation of treatment efficacy in clinical studies. Finally, we propose a three-pathway model of malignant progression. One of these pathways has been recently mathematically modeled by the proliferation-invasion-hypoxia-necrosis-angiogenesis (PIHNA) system of equations. We show how this model leads to the important concept of kinetic grade, which is complementary to the usual histological grade.


Biomathematical modeling Diffuse low-grade glioma Computational models Malignant progression 


  1. 1.
    Angelini ED, Clatz O, Mandonnet E, Konukoglu E, Capelle L, Duffau H. Glioma dynamics and computational models: a review of segmentation, registration, and in silico growth algorithms and their clinical applications. Curr Med Imag Rev. 2007;3(4):425–37.CrossRefGoogle Scholar
  2. 2.
    Burgess PK, Kulesa PM, Murray JD, Alvord Jr EC. The interaction of growth rates and diffusion coefficients in a three-dimensional mathematical model of gliomas. J Neuropathol Exp Neurol. 1997;56(6):704–13.PubMedGoogle Scholar
  3. 3.
    Clatz O, Sermesant M, Bondiau PY, Delingette H, Warfield SK, Malandain G, Ayache N. Realistic simulation of the 3-D growth of brain tumors in MR images coupling diffusion with biomechanical deformation. IEEE Trans Med Imaging. 2005;24(10):1334–46.PubMedCrossRefGoogle Scholar
  4. 4.
    Ellingson BM, Malkin MG, Rand SD, Connelly JM, Quinsey C, LaViolette PS, Bedekar DP, Schmainda KM. Validation of functional diffusion maps (fDMs) as a biomarker for human glioma cellularity. J Magn Reson Imaging. 2010;31(3):538–48.PubMedCrossRefGoogle Scholar
  5. 5.
    Ellingson BM, LaViolette PS, Rand SD, Malkin MG, Connelly JM, Mueller WM, Prost RW, Schmainda KM. Spatially quantifying microscopic tumor invasion and proliferation using a voxel-wise solution to a glioma growth model and serial diffusion MRI. Magn Reson Med. 2011;65(4):1131–43.PubMedCrossRefGoogle Scholar
  6. 6.
    Ganslandt O, Stadlbauer A, Fahlbusch R, Kamada K, Buslei R, Blumcke I, Nimsky C, Moser E. Proton magnetic resonance spectroscopic imaging integrated into image-guided surgery: correlation to standard magnetic resonance imaging and tumor cell density. Neurosurgery. 2005;56(2 Suppl):291–8; discussion 291–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Gerin C, Pallud J, Grammaticos B, Mandonnet E, Deroulers C, Varlet P, Capelle L, Taillandier L, Bauchet L, Duffau H, Badoual M. Improving the time-machine: estimating date of birth of grade II gliomas. Cell Prolif. 2011;45(1):76–90.PubMedCrossRefGoogle Scholar
  8. 8.
    Harpold HL, Alvord Jr EC, Swanson KR. The evolution of mathematical modeling of glioma proliferation and invasion. J Neuropathol Exp Neurol. 2007;66(1):1–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Ius T, Angelini E, Thiebautde Schotten M, Mandonnet E, Duffau H. Evidence for potentials and limitations of brain plasticity using an atlas of functional resectability of WHO grade II gliomas: towards a “minimal common brain”. Neuroimage. 2011;56(3):992–1000.PubMedCrossRefGoogle Scholar
  10. 10.
    Jbabdi S, Mandonnet E, Duffau H, Capelle L, Swanson KR, Pelegrini-Issac M, Guillevin R, Benali H. Simulation of anisotropic growth of low-grade gliomas using diffusion tensor imaging. Magn Reson Med. 2005;54(3):616–24.PubMedCrossRefGoogle Scholar
  11. 11.
    Konukoglu E, Clatz O, Menze BH, Stieltjes B, Weber MA, Mandonnet E, Delingette H, Ayache N. Image guided personalization of reaction-diffusion type tumor growth models using modified anisotropic eikonal equations. IEEE Trans Med Imaging. 2010;29(1):77–95.PubMedCrossRefGoogle Scholar
  12. 12.
    Mandonnet E, Capelle L, Duffau H. Extension of paralimbic low grade gliomas: toward an anatomical classification based on white matter invasion patterns. J Neurooncol. 2006;78(2):179–85.PubMedCrossRefGoogle Scholar
  13. 13.
    Mandonnet E, Jbabdi S, Taillandier L, Galanaud D, Benali H, Capelle L, Duffau H. Preoperative estimation of residual volume for WHO grade II glioma resected with intraoperative functional mapping. Neuro Oncol. 2007;9(1):63–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Mandonnet E, Pallud J, Clatz O, Taillandier L, Konukoglu E, Duffau H, Capelle L. Computational modeling of the WHO grade II glioma dynamics: principles and applications to management paradigm. Neurosurg Rev. 2008;31(3):263–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Mandonnet E, Duffau H, Bauchet L. A new tool for grade II glioma studies: plotting cumulative time with quality of life versus time to malignant transformation. J Neurooncol. 2011;106(1):213–5.PubMedCrossRefGoogle Scholar
  16. 16.
    McKnight TR, Lamborn KR, Love TD, Berger MS, Chang S, Dillon WP, Bollen A, Nelson SJ. Correlation of magnetic resonance spectroscopic and growth characteristics within Grades II and III gliomas. J Neurosurg. 2007;106(4):660–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Menze BH, Van Leemput K, Honkela A, Konukoglu E, Weber MA, Ayache N, Golland P. A generative approach for image-based modeling of tumor growth. Inf Process Med Imaging. 2011;22:735–47.PubMedCrossRefGoogle Scholar
  18. 18.
    Ozturk-Isik E, Pirzkall A, Lamborn KR, Cha S, Chang SM, Nelson SJ. Spatial characteristics of newly diagnosed grade 3 glioma assessed by magnetic resonance metabolic and diffusion tensor imaging. Transl Oncol. 2012;5(1):10–8.PubMedGoogle Scholar
  19. 19.
    Pallud J, Mandonnet E, Duffau H, Kujas M, Guillevin R, Galanaud D, Taillandier L, Capelle L. Prognostic value of initial magnetic resonance imaging growth rates for World Health Organization grade II gliomas. Ann Neurol. 2006;60(3):380–3.PubMedCrossRefGoogle Scholar
  20. 20.
    Pallud J, Llitjos JF, Dhermain F, Varlet P, Dezamis E, Devaux B, Souillard-Scemama R, Sanai N, Koziak M, Page P, Schlienger M, Daumas-Duport C, Meder JF, Oppenheim C, Roux FX. Dynamic imaging response following radiation therapy predicts long-term outcomes for diffuse low-grade gliomas. Neuro Oncol. 2012;14(4):496–505.PubMedCrossRefGoogle Scholar
  21. 21.
    Peyre M, Cartalat-Carel S, Meyronet D, Ricard D, Jouvet A, Pallud J, Mokhtari K, Guyotat J, Jouanneau E, Sunyach MP, Frappaz D, Honnorat J, Ducray F. Prolonged response without prolonged chemotherapy: a lesson from PCV chemotherapy in low-grade gliomas. Neuro Oncol. 2010;12(10):1078–82.PubMedCrossRefGoogle Scholar
  22. 22.
    Ribba B, Kaloshi G, Peyre M, Ricard D, Calvez V, Tod M, Čajavec-Bernard B, Idbaih A, Psimaras D, Dainese L, Pallud J, Cartalat-Carel S, Delattre JY, Honnorat J, Grenier E, Ducray F. A tumor growth inhibition model for low-grade glioma treated with chemotherapy or radiotherapy. Clin Cancer Res. 2012;18(18):5071–80.PubMedCrossRefGoogle Scholar
  23. 23.
    Ricard D, Kaloshi G, Amiel-Benouaich A, Lejeune J, Marie Y, Mandonnet E, Kujas M, Mokhtari K, Taillibert S, Laigle-Donadey F, Carpentier AF, Omuro A, Capelle L, Duffau H, Cornu P, Guillevin R, Sanson M, Hoang-Xuan K, Delattre JY. Dynamic history of low-grade gliomas before and after temozolomide treatment. Ann Neurol. 2007;61(5):484–90.PubMedCrossRefGoogle Scholar
  24. 24.
    Stadlbauer A, Ganslandt O, Buslei R, Hammen T, Gruber S, Moser E, Buchfelder M, Salomonowitz E, Nimsky C. Gliomas: histopathologic evaluation of changes in directionality and magnitude of water diffusion at diffusion-tensor MR imaging. Radiology. 2006;240(3):803–10.PubMedCrossRefGoogle Scholar
  25. 25.
    Swanson KR, Alvord Jr EC, Murray JD. A quantitative model for differential motility of gliomas in grey and white matter. Cell Prolif. 2000;33(5):317–29.PubMedCrossRefGoogle Scholar
  26. 26.
    Swanson KR, Alvord Jr EC, Murray JD. Virtual resection of gliomas: effect of extent of resection on recurrence. Math Comput Model. 2003;37:1177–90.CrossRefGoogle Scholar
  27. 27.
    Swanson KR, Bridge C, Murray JD, Alvord Jr EC. Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion. J Neurol Sci. 2003;216(1):1–10.PubMedCrossRefGoogle Scholar
  28. 28.
    Swanson KR, Rockne RC, Claridge J, Chaplain MA, Alvord Jr EC, Anderson AR. Quantifying the role of angiogenesis in malignant progression of gliomas: in silico modeling integrates imaging and histology. Cancer Res. 2011;71(24):7366–75.PubMedCrossRefGoogle Scholar
  29. 29.
    Tracqui P, Cruywagen GC, Woodward DE, Bartoo GT, Murray JD, Alvord Jr EC. A mathematical model of glioma growth: the effect of chemotherapy on spatio-temporal growth. Cell Prolif. 1995;28(1):17–31.PubMedCrossRefGoogle Scholar
  30. 30.
    Wang CH, Rockhill JK, Mrugala M, Peacock DL, Lai A, Jusenius K, Wardlaw JM, Cloughesy T, Spence AM, Rockne R, Alvord Jr EC, Swanson KR. Prognostic significance of growth kinetics in newly diagnosed glioblastomas revealed by combining serial imaging with a novel biomathematical model. Cancer Res. 2009;69(23):9133–40.PubMedCrossRefGoogle Scholar
  31. 31.
    Woodward DE, Cook J, Tracqui P, Cruywagen GC, Murray JD, Alvord Jr EC. A mathematical model of glioma growth: the effect of extent of surgical resection. Cell Prolif. 1996;29(6):269–88.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Department of NeurosurgeryLariboisière HospitalParisFrance

Personalised recommendations