Interactions Between Diffuse Low-Grade Glioma (DLGG) and Brain Plasticity

  • Hugues DuffauEmail author


The traditional view in neurooncology is to see first the tumor, with very few considerations concerning the brain. However, to select the best treatment for each patient with a DLGG, that is, to optimize the “onco-functional balance,” the understanding of the natural history of this chronic disease is not sufficient. One should also study the reaction of the central nervous system elicited by the growth and migration of the glioma. Indeed, due to strong interactions between DLGG and the brain, cerebral adaptive phenomena often occur in order to maintain neurological and cognitive functions, namely, to compensate the spreading of this diffuse tumor. Here, the purpose is to investigate mechanisms underlying such brain plasticity, with the goal to tailor the optimal management according to the dynamic relationships between DLGG course and cerebral functional reorganization at the individual level. Beyond the fundamental interest, it is crucial for the (surgical) neurooncologist to improve his knowledge of brain hodotopy to elaborate new therapeutic strategies, such as multistage surgical approach, made possible thanks to cerebral remapping over years. Therefore, cognitive neurosciences seem to represent a precious help to neurooncology by opening new avenues to improve both quality of life and median survival in DLGG patients, that is, to move toward “functional neurooncology.”


DLGG Brain plasticity Brain hodotopy Subcortical connectivity Surgery Functional neurooncology Quality of life 


  1. 1.
    Duffau H. Lessons from brain mapping in surgery for low-grade glioma: insights into associations between tumour and brain plasticity. Lancet Neurol. 2005;4:476–86.PubMedCrossRefGoogle Scholar
  2. 2.
    Desmurget M, Bonnetblanc F, Duffau H. Contrasting acute and slow growing lesions: a new door to brain plasticity. Brain. 2007;130:898–914.PubMedCrossRefGoogle Scholar
  3. 3.
    Duffau H. Brain plasticity and tumors. Adv Tech Stand Neurosurg. 2008;3:3–33.CrossRefGoogle Scholar
  4. 4.
    Duffau H. Brain plasticity: from pathophysiological mechanisms to therapeutic applications. J Clin Neurosci. 2006;13:885–97.PubMedCrossRefGoogle Scholar
  5. 5.
    Varela F, Lachaux JP, Rodriguez E, Martinerie J. The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci. 2001;2:229–39.PubMedCrossRefGoogle Scholar
  6. 6.
    Werner G. Brain dynamics across levels of organization. J Physiol Paris. 2007;101:273–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Bavelier D, Neville HJ. Cross-modal plasticity: where and how? Nat Rev Neurosci. 2002;3:443–52.PubMedGoogle Scholar
  8. 8.
    Duffau H, Sichez JP, Lehéricy S. Intraoperative unmasking of brain redundant motor sites during resection of a precentral angioma. Evidence using direct cortical stimulations. Ann Neurol. 2000;47:132–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Duffau H. Acute functional reorganisation of the human motor cortex during resection of central lesions: a study using intraoperative brain mapping. J Neurol Neurosurg Psychiatry. 2001;70:506–13.PubMedCrossRefGoogle Scholar
  10. 10.
    Rossini PM, Calautti C, Pauri F, Baron JC. Post-stroke plastic reorganisation in the adult brain. Lancet Neurol. 2003;2:493–502.PubMedCrossRefGoogle Scholar
  11. 11.
    Sanes JN, Donoghue JP, Thangaraj V, Edelman RR, Warach S. Shared neural substrates controlling hand movements in human motor cortex. Science. 1995;268:1775–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Sporns O, Tononi G, Kötter R. The human connectome: a structural description of the human brain. PLoS Comput Biol. 2005;1:e42.PubMedCrossRefGoogle Scholar
  13. 13.
    Honey CJ, Kötter R, Breakspear M, Sporns O. Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc Natl Acad Sci USA. 2007;104:10240–5.PubMedCrossRefGoogle Scholar
  14. 14.
    Basset DS, Bullmore ET. Human brain networks in health and disease. Curr Opin Neurol. 2009;22:340–7.CrossRefGoogle Scholar
  15. 15.
    Ius T, Angelini E, Thiebaut de Schotten M, Mandonnet E, Duffau H. Evidence for potentials and limitations of brain plasticity using an atlas of functional resectability of WHO grade II gliomas: towards a “minimal common brain”. Neuroimage. 2001;56:992–1000.CrossRefGoogle Scholar
  16. 16.
    Duffau H. Does post-lesional subcortical plasticity exist in the human brain? Neurosci Res. 2009;65:131–5.PubMedCrossRefGoogle Scholar
  17. 17.
    Duffau H, Capelle L. Preferential brain locations of low-grade gliomas. Cancer. 2004;100:2622–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Parisot S, Duffau H, Chemouny S, Paragios N. Graph based spatial position mapping of low-grade gliomas. Med Image Comput Comput Assist Interv. 2011;14:508–15.PubMedGoogle Scholar
  19. 19.
    Varona JF, Bermejo F, Guerra JM, Molina JA. Long-term prognosis of ischemic stroke in young adults. Study of 272 cases. J Neurol. 2004;251:1507–14.PubMedCrossRefGoogle Scholar
  20. 20.
    Keidel JL, Welbourne SR, Lambon Ralph MA. Solving the paradox of the equipotential and modular brain: a neurocomputational model of stroke vs. slow-growing glioma. Neuropsychologia. 2010;48:1716–24.PubMedCrossRefGoogle Scholar
  21. 21.
    Pallud J, Mandonnet E, Duffau H, Kujas M, Guillevin R, Galanaud D, et al. Prognostic value of initial magnetic resonance imaging growth rates for World Health Organization grade II gliomas. Ann Neurol. 2006;60:380–3.PubMedCrossRefGoogle Scholar
  22. 22.
    Duffau H, Capelle L, Denvil D, Sichez N, Gatignol P, Lopes M, et al. Functional recovery after surgical resection of low grade gliomas in eloquent brain: hypothesis of brain compensation. J Neurol Neurosurg Psychiatry. 2003;74:901–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Duffau H. New concepts in surgery of WHO grade II gliomas: functional brain mapping, connectionism and plasticity. J Neurooncol. 2006;79:77–115.PubMedCrossRefGoogle Scholar
  24. 24.
    Bartolomei F, Bosma I, Klein M, Baayen JC, Reijneveld JC, Postma TJ, et al. How do brain tumors alter functional connectivity? A magnetoencephalography study. Ann Neurol. 2006;59:128–38.PubMedCrossRefGoogle Scholar
  25. 25.
    Bosma I, Douw L, Bartolomei F, Heimans JJ, van Dijk BW, Postma TJ, et al. Synchronized brain activity and neurocognitive function in patients with low-grade glioma: a magnetoencephalography study. Neuro Oncol. 2008;10:734–44.PubMedCrossRefGoogle Scholar
  26. 26.
    Douw L, Baayen JC, Bosma I, Klein M, Vandertop WP, Heimans JJ, et al. Treatment-related changes in functional connectivity in brain tumor patients: a magnetoencephalography study. Exp Neurol. 2008;212:285–90.PubMedCrossRefGoogle Scholar
  27. 27.
    Catani M. From hodology to function. Brain. 2007;130:602–5.PubMedCrossRefGoogle Scholar
  28. 28.
    de Benedictis A, Duffau H. Brain hodotopy: from esoteric concept to practical surgical applications. Neurosurgery. 2011;68:1709–23.PubMedCrossRefGoogle Scholar
  29. 29.
    Mandonnet E, Jbabdi S, Taillandier L, Galanaud D, Benali H, Capelle L, et al. Preoperative estimation of residual volume for WHO grade II glioma resected with intraoperative functional mapping. Neuro Oncol. 2007;9:63–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Duffau H, Gatignol P, Mandonnet E, Capelle L, Taillandier L. Intraoperative subcortical stimulation mapping of language pathways in a consecutive series of 115 patients with Grade II glioma in the left dominant hemisphere. J Neurosurg. 2008;109:461–71.PubMedCrossRefGoogle Scholar
  31. 31.
    Mandonnet E, Capelle L, Duffau H. Extension of paralimbic low grade gliomas: toward an anatomical classification based on white matter invasion patterns. J Neurooncol. 2006;78:179–85.PubMedCrossRefGoogle Scholar
  32. 32.
    Pallud J, Devaux B, Daumas-Duport C, Oppenheim C, Roux FX. Glioma dissemination along the corticospinal tract. J Neurooncol. 2005;73:239–40.PubMedCrossRefGoogle Scholar
  33. 33.
    Stam CJ. Characterization of anatomical and functional connectivity in the brain: a complex networks perspective. Int J Psychophysiol. 2010;77:186–94.PubMedCrossRefGoogle Scholar
  34. 34.
    Hickok G, Poeppel D. The cortical organization of speech processing. Nat Rev Neurosci. 2007;8:393–402.PubMedCrossRefGoogle Scholar
  35. 35.
    Alstott J, Breakspear M, Hagmann P, Cammoun L, Sporns O. Modeling the impact of lesions in the human brain. PLoS Comput Biol. 2009;5:e1000408.PubMedCrossRefGoogle Scholar
  36. 36.
    Dancause N, Barbay S, Frost SB, Plautz EJ, Chen D, Zoubina EV, et al. Extensive cortical rewiring after brain injury. J Neurosci. 2005;25:10167–79.PubMedCrossRefGoogle Scholar
  37. 37.
    Guleria S, Gupta RK, Saksena S, Chandra A, Srivastava RN, Husain M, et al. Retrograde Wallerian degeneration of cranial corticospinal tracts in cervical spinal cord injury patients using diffusion tensor imaging. J Neurosci Res. 2008;86:2271–80.PubMedCrossRefGoogle Scholar
  38. 38.
    Chen X, Dai J, Jiang T. Supratentorial WHO grade II glioma invasion: a morphologic study using sequential conventional MRI. Br J Neurosurg. 2010;24:196–201.PubMedCrossRefGoogle Scholar
  39. 39.
    Giese A, Westphal M. Glioma invasion in the central nervous system. Neurosurgery. 1996;39:235–50.PubMedCrossRefGoogle Scholar
  40. 40.
    Duffau H, Moritz-Gasser S, Mandonnet E. A re-examination of neural basis of language processing: proposal of a dynamic hodotopical model from data provided by brain stimulation mapping during picture naming. Brain Lang (in press).Google Scholar
  41. 41.
    Ojemann G, Ojemann J, Lettich E, Berger M. Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. J Neurosurg. 1989;71:316–26.PubMedCrossRefGoogle Scholar
  42. 42.
    Gras-Combes G, Moritz-Gasser S, Herbet G, Duffau H. Intraoperative subcortical electrical mapping of optic radiations in awake surgery for glioma involving visual pathways. J Neurosurg. 2012;117(3):466–73.CrossRefGoogle Scholar
  43. 43.
    Mandonnet E, Gatignol P, Duffau H. Evidence for an occipito-temporal tract underlying visual recognition in picture naming. Clin Neurol Neurosurg. 2009;111:601–5.PubMedCrossRefGoogle Scholar
  44. 44.
    Gaillard R, Naccache L, Pinel P, Clémenceau S, Volle E, Hasboun D, et al. Direct intracranial, FMRI, and lesion evidence for the causal role of left inferotemporal cortex in reading. Neuron. 2006;50:191–204.PubMedCrossRefGoogle Scholar
  45. 45.
    Maldonado IL, Moritz-Gasser S, Duffau H. Does the left superior longitudinal fascicle subserve language semantics? A brain electrostimulation study. Brain Struct Funct. 2011;216:263–4.PubMedCrossRefGoogle Scholar
  46. 46.
    Bello L, Gallucci M, Fava M, Carrabba G, Giussani C, Acerbi F, et al. Intraoperative subcortical language tract mapping guides surgical removal of gliomas involving speech areas. Neurosurgery. 2007;60:67–80.PubMedCrossRefGoogle Scholar
  47. 47.
    Duffau H, Gatignol P, Mandonnet E, Peruzzi P, Tzourio-Mazoyer N, Capelle L. New insights into the anatomo-functional connectivity of the semantic system: a study using cortico-subcortical stimulations. Brain. 2005;128:797–810.PubMedCrossRefGoogle Scholar
  48. 48.
    Benzagmout M, Gatignol P, Duffau H. Resection of WHO Health Organization Grade II gliomas involving Broca’s area: methodological and functional considerations. Neurosurgery. 2007;61:741–52.PubMedCrossRefGoogle Scholar
  49. 49.
    Sarubbo S, De Benedictis A, Maldonado IL, Basso G, Duffau H. Frontal terminations for the inferior fronto-occipital fascicle: anatomical dissection, DTI study and functional considerations on a multi-component bundle. Brain Struct Funct. 2013;218:21–37.Google Scholar
  50. 50.
    Martino J, Brogna C, Gil Robles S, Vergani F, Duffau H. Anatomic dissection of the inferior fronto-occipital fasciculus revisited in the lights of brain stimulation data. Cortex. 2010;46:691–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Vigneau M, Beaucousin V, Herve PY, Duffau H, Crivello F, Houdé O, et al. Meta-analyzing left hemisphere language areas: phonology, semantics, and sentence processing. Neuroimage. 2006;30:1414–32.PubMedCrossRefGoogle Scholar
  52. 52.
    Plaza M, Gatignol P, Cohen H, Berger B, Duffau H. A discrete area within the left dorsolateral prefrontal cortex involved in visual-verbal incongruence judgment. Cereb Cortex. 2008;18:1253–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Holland R, Lambon-Ralph MA. The anterior temporal lobe semantic hub is a part of the language neural network: selective disruption of irregular past tense verb by rTMS. Cereb Cortex. 2010;20:2771–5.PubMedCrossRefGoogle Scholar
  54. 54.
    Mandonnet E, Nouet A, Gatignol P, Capelle L, Duffau H. Does the left inferior longitudinal fasciculus play a role in language? A brain stimulation study. Brain. 2007;130:623–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Duffau H, Gatignol P, Moritz-Gasser S, Mandonnet E. Is the left uncinate fasciculus essential for language? A cerebral stimulation study. J Neurol. 2009;256:382–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Duffau H, Thiebaut de Schotten M, Mandonnet E. White matter functional connectivity as an additional landmark for dominant temporal lobectomy. J Neurol Neurosurg Psychiatry. 2008;79:492–5.PubMedCrossRefGoogle Scholar
  57. 57.
    Papagno C, Miracapillo C, Casarotti A, Romero Lauro LJ, Castellano A, Falini A, et al. What is the role of the uncinate fasciculus? Surgical removal and proper name retrieval. Brain. 2011;134:405–14.PubMedCrossRefGoogle Scholar
  58. 58.
    De Witt Hamer P, Moritz-Gasser S, Gatignol P, Duffau H. Is the human left middle longitudinal fascicle essential for language? A brain electrostimulation study. Hum Brain Mapp. 2011;32:962–73.PubMedCrossRefGoogle Scholar
  59. 59.
    Maldonado IL, Moritz-Gasser S, de Champfleur NM, Bertram L, Moulinié G, Duffau H. Surgery for gliomas involving the left inferior parietal lobule: new insights into the functional anatomy provided by stimulation mapping in awake patients. J Neurosurg. 2011;115:770–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Duffau H, Capelle L, Sichez N, Denvil D, Bitar A, Sichez JP, et al. Intraoperative mapping of the subcortical language pathways using direct stimulations. An anatomo-functional study. Brain. 2002;125:199–214.PubMedCrossRefGoogle Scholar
  61. 61.
    Martino J, De Witt Hamer PC, Berger MS, Lawton MT, Arnold CM, de Lucas EM, et al. Analysis of the subcomponents and cortical terminations of the perisylvian superior longitudinal fasciculus: a fiber dissection and DTI tractography study. Brain Struct Funct. 2013;218:105–21.Google Scholar
  62. 62.
    Geschwind N. The organization of language and the brain. Science. 1970;170:940–4.PubMedCrossRefGoogle Scholar
  63. 63.
    Catani M, Jones DK, ffytche DH. Perisylvian language networks of the human brain. Ann Neurol. 2005;57:8–16.PubMedCrossRefGoogle Scholar
  64. 64.
    Duffau H, Gatignol P, Denvil D, Lopes M, Capelle L. The articulatory loop: study of the subcortical connectivity by electrostimulation. Neuroreport. 2003;14:2005–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Makris N, Kennedy DN, McInerney S, Sorensen AG, Wang R, Caviness Jr VS, et al. Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. Cereb Cortex. 2005;15:854–69.PubMedCrossRefGoogle Scholar
  66. 66.
    Duffau H, Capelle L, Denvil D, Gatignol P, Sichez N, Lopes M, et al. The role of dominant premotor cortex in language: a study using intraoperative functional mapping in awake patients. Neuroimage. 2003;20:1903–14.PubMedCrossRefGoogle Scholar
  67. 67.
    Duffau H. The anatomo-functional connectivity of language revisited: new insights provided by electrostimulation and tractography. Neuropsychologia. 2008;4:927–34.CrossRefGoogle Scholar
  68. 68.
    Duffau H. The “frontal syndrome” revisited: lessons from electrostimulation mapping studies. Cortex. 2012;48:120–31.PubMedCrossRefGoogle Scholar
  69. 69.
    Thiebaut de Schotten M, Urbanski M, Duffau H, Volle E, Levy R, Dubois B, et al. Direct evidence for a parietal-frontal pathway subserving spatial awareness in humans. Science. 2005;309:2226–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Duffau H, Lopes M, Arthuis F, Bitar A, Sichez JP, van Effenterre R, et al. Contribution of intraoperative electrical stimulations in surgery of low grade gliomas: a comparative study between two series without (1985–96) and with (1996–2003) functional mapping in the same institution. J Neurol Neurosurg Psychiatry. 2005;76:845–51.PubMedCrossRefGoogle Scholar
  71. 71.
    de Benedictis A, Moritz-Gasser S, Duffau H. Awake mapping optimizes the extent of resection for low-grade gliomas in eloquent areas. Neurosurgery. 2010;66:1074–84.PubMedCrossRefGoogle Scholar
  72. 72.
    Gil Robles S, Gatignol P, Lehéricy S, Duffau H. Long-term brain plasticity allowing multiple-stages surgical approach for WHO grade II gliomas in eloquent areas: a combined study using longitudinal functional MRI and intraoperative electrical stimulation. J Neurosurg. 2008;109:615–24.CrossRefGoogle Scholar
  73. 73.
    Gil Robles S, Duffau H. Surgical management of World Health Organization Grade II gliomas in eloquent areas: the necessity of preserving a margin around functional structures. Neurosurg Focus. 2010;28:E8.PubMedCrossRefGoogle Scholar
  74. 74.
    Duffau H. Recovery from complete hemiplegia following resection of a retrocentral metastasis: the prognostic value of intraoperative cortical stimulation. J Neurosurg. 2001;95:1050–2.PubMedCrossRefGoogle Scholar
  75. 75.
    Duffau H, Capelle L, Sichez J, Faillot T, Abdennour L, Law Koune JD, et al. Intra-operative direct electrical stimulations of the central nervous system: the Salpêtrière experience with 60 patients. Acta Neurochir (Wien). 1999;141:1157–67.CrossRefGoogle Scholar
  76. 76.
    Duffau H. A new concept of diffuse (low-grade) glioma surgery. Adv Tech Stand Neurosurg. 2012;38:3–27.PubMedCrossRefGoogle Scholar
  77. 77.
    Lubrano V, Draper L, Roux FE. What makes surgical tumor resection feasible in Broca’s area? Insights into intraoperative brain mapping. Neurosurgery. 2010;66:868–75.PubMedCrossRefGoogle Scholar
  78. 78.
    Peraud A, Ilmberger J, Reulen HJ. Surgical resection of gliomas WHO grade II and III located in the opercular region. Acta Neurochir (Wien). 2004;146:9–17.CrossRefGoogle Scholar
  79. 79.
    Sahin NT, Pinker S, Cash SS, Schomer D, Halgren E. Sequential processing of lexical, grammatical, and phonological information within Broca’s area. Science. 2009;326:445–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Plaza M, Gatignol P, Leroy M, Duffau H. Speaking without Broca’s area after tumor resection. Neurocase. 2009;9:1–17.Google Scholar
  81. 81.
    Sarubbo S, Le Bars E, Moritz-Gasser S, Duffau H. Complete recovery after surgical resection of left Wernicke’s area in awake patient: a brain stimulation and functional MRI study. Neurosurg Rev. 2012;35:287–92.PubMedCrossRefGoogle Scholar
  82. 82.
    Duffau H, Capelle L, Lopes M, Faillot T, Sichez JP, Fohanno D. The insular lobe: physiopathological and surgical considerations. Neurosurgery. 2000;47:801–10.PubMedCrossRefGoogle Scholar
  83. 83.
    Duffau H. A personal consecutive series of surgically treated 51 cases of insular WHO Grade II glioma: advances and limitations. J Neurosurg. 2009;110:696–708.PubMedCrossRefGoogle Scholar
  84. 84.
    Duffau H, Bauchet L, Lehéricy S, Capelle L. Functional compensation of the left dominant insula for language. Neuroreport. 2001;12:2159–63.PubMedCrossRefGoogle Scholar
  85. 85.
    Duffau H, Taillandier L, Gatignol P, Capelle L. The insular lobe and brain plasticity: lessons from tumor surgery. Clin Neurol Neurosurg. 2006;108:543–8.PubMedCrossRefGoogle Scholar
  86. 86.
    Duffau H, Moritz-Gasser S, Gatignol P. Functional outcome after language mapping for insular World Health Organization Grade II gliomas in the dominant hemisphere: experience with 24 patients. Neurosurg Focus. 2009;27:E7.PubMedCrossRefGoogle Scholar
  87. 87.
    Duffau H, Mandonnet E, Gatignol P, Capelle L. Functional compensation of the claustrum: lessons from low-grade glioma surgery. J Neurooncol. 2007;81:327–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Duffau H, Denvil D, Capelle L. Absence of movement disorders after surgical resection of glioma invading the right striatum. J Neurosurg. 2002;97:363–9.PubMedCrossRefGoogle Scholar
  89. 89.
    Duffau H, Karachi C, Gatignol P, Capelle L. Transient Foix-Chavany-Marie syndrome after surgical resection of a right insulo-opercular low-grade glioma. Neurosurgery. 2003;53:426–31.PubMedCrossRefGoogle Scholar
  90. 90.
    LeRoux PD, Berger MS, Haglund MM, Pilcher WH, Ojemann GA. Resection of intrinsic tumors from nondominant face motor cortex using stimulation mapping: report of two cases. Surg Neurol. 1991;36:44–8.PubMedCrossRefGoogle Scholar
  91. 91.
    Duffau H, Denvil D, Capelle L. Long term reshaping of language, sensory and motor maps following glioma resection: a new parameter to integrate in the surgical strategy. J Neurol Neurosurg Psychiatry. 2002;72:511–6.PubMedGoogle Scholar
  92. 92.
    Meunier S, Duffau H, Garnero L, Capelle L, Ducorps A. Comparison of the somatosensory cortical mapping of the fingers using a whole head magnetoencephalography (MEG) and direct electrical stimulations during surgery in awake patients. Neuroimage 2000;11:5(abstract).Google Scholar
  93. 93.
    Duffau H, Capelle L. Functional recovery following lesions of the primary somatosensory fields. Study of the compensatory mechanisms. Neurochirurgie. 2001;47:557–63.PubMedGoogle Scholar
  94. 94.
    Duffau H, Lopes M, Denvil D, Capelle L. Delayed onset of the supplementary motor area syndrome after surgical resection of the mesial frontal lobe: a time course study using intraoperative mapping in an awake patient. Stereotact Funct Neurosurg. 2001;76:74–82.PubMedCrossRefGoogle Scholar
  95. 95.
    Krainik A, Lehéricy S, Duffau H, Vlaicu M, Poupon F, Capelle L, et al. Role of the supplementary motor area in motor deficit following medial frontal lobe surgery. Neurology. 2001;57:871–8.PubMedCrossRefGoogle Scholar
  96. 96.
    Krainik A, Lehéricy S, Duffau H, Capelle L, Chainay H, Cornu P, et al. Postoperative speech disorder after medial frontal surgery: role of the supplementary motor area. Neurology. 2003;60:587–94.PubMedCrossRefGoogle Scholar
  97. 97.
    Krainik A, Duffau H, Capelle L, Cornu P, Boch AL, Mangin JF, et al. Role of the healthy hemisphere in recovery after resection of the supplementary motor area. Neurology. 2004;62:1323–32.PubMedCrossRefGoogle Scholar
  98. 98.
    Schucht P, Moritz-Gasser S, Herbet G, Raabe A, Duffau H. Subcortical electrostimulation to identify network subserving motor control. Hum Brain Mapp. 2012 (in press).Google Scholar
  99. 99.
    Duffau H, Khalil I, Gatignol P, Denvil D, Capelle L. Surgical removal of corpus callosum infiltrated by low-grade glioma: functional outcome and oncological considerations. J Neurosurg. 2004;100:431–7.PubMedCrossRefGoogle Scholar
  100. 100.
    Teixidor P, Gatignol P, Leroy M, Masuet-Aumatell C, Capelle L, Duffau H. Assessment of verbal working memory before and after surgery for low-grade glioma. J Neurooncol. 2007;81:305–13.PubMedCrossRefGoogle Scholar
  101. 101.
    Moritz-Gasser S, Herbet G, Maldonado IL, Duffau H. Lexical access speed is significantly correlated with the return to professional activities after awake surgery for low-grade gliomas. J Neurooncol. 2012;107:633–41.PubMedCrossRefGoogle Scholar
  102. 102.
    Finger S, Marshak RA, Cohen M, Scheff S, Trace R, Niemand D. Effects of successive and simultaneous lesions of somatosensory cortex on tactile discrimination in the rat. J Comp Physiol Psychol. 1971;77:221–7.PubMedCrossRefGoogle Scholar
  103. 103.
    Adametz J. Rate of recovery of functioning in cats with rostral reticular lesions; an experimental study. J Neurosurg. 1959;16:85–97.PubMedCrossRefGoogle Scholar
  104. 104.
    Rosen J, Stein D, Butters N. Recovery of function after serial ablation of prefrontal cortex in the rhesus monkey. Science. 1971;173:353–6.PubMedCrossRefGoogle Scholar
  105. 105.
    Patrissi G, Stein DG. Temporal factors in recovery of function after brain damage. Exp Neurol. 1975;47:470–80.PubMedCrossRefGoogle Scholar
  106. 106.
    Glick SD, Zimmerberg B. Comparative recovery following simultaneous- and successive-stage frontal brain damage in mice. J Comp Physiol Psychol. 1972;79:481–7.PubMedCrossRefGoogle Scholar
  107. 107.
    Stewart JW, Ades H. The time factor in reintegration of a learned habit lost after temporal lobe lesions in the monkey (Macaca mulatta). J Comp Physiol Psychol. 1951;44:479–86.PubMedCrossRefGoogle Scholar
  108. 108.
    Stein DG, Butters N, Rosen J. A comparison of two- and four-stage ablations of sulcus principals on recovery of spatial performance in the rhesus monkey. Neuropsychologia. 1977;15:179–82.PubMedCrossRefGoogle Scholar
  109. 109.
    Martino J, Taillandier L, Moritz-Gasser S, Gatignol P, Duffau H. Re-operation is a safe and effective therapeutic strategy in recurrent WHO grade II gliomas within eloquent areas. Acta Neurochir (Wien). 2009;151:427–36.CrossRefGoogle Scholar
  110. 110.
    Duffau H. The challenge to remove diffuse low-grade gliomas while preserving brain functions. Acta Neurochir (Wien). 2012;154:569–74.CrossRefGoogle Scholar
  111. 111.
    Duffau H. Surgery of low-grade gliomas: towards a “functional neurooncology”. Curr Opin Oncol. 2009;21:543–9.PubMedCrossRefGoogle Scholar
  112. 112.
    Duffau H, Taillandier L, Capelle L. Radical surgery after chemotherapy: a new therapeutic strategy to envision in grade II glioma. J Neurooncol. 2006;80:171–6.PubMedCrossRefGoogle Scholar
  113. 113.
    Blonski M, Taillandier L, Herbet G, Maldonado IL, Beauchesne P, Fabbro M, et al. Combination of neoadjuvant chemotherapy followed by surgical resection as new strategy for WHO grade II gliomas: a study of cognitive status and quality of life. J Neurooncol. 2012;106:353–66.PubMedCrossRefGoogle Scholar
  114. 114.
    Marrelec G, Krainik A, Duffau H, Pélégrini-Issac M, Lehéricy S, Doyon J, et al. Partial correlation for functional brain interactivity investigation in functional MRI. Neuroimage. 2006;32:228–37.PubMedCrossRefGoogle Scholar
  115. 115.
    Marrelec G, Bellec P, Kranik A, Duffau H, Pélégrini-Issac M, Lehéricy S, et al. Regions, ­systems and the brain: hierarchical measures of functional integration in fMRI. Med Image Anal. 2008;12:484–96.PubMedCrossRefGoogle Scholar
  116. 116.
    Gehring K, Sitskoorn MM, Gundy CM, Sikkes SA, Klein M, Postma TJ, et al. Cognitive rehabilitation in patients with gliomas: a randomized, controlled trial. J Clin Oncol. 2009;27:3712–22.PubMedCrossRefGoogle Scholar
  117. 117.
    Yordanova Y, Moritz-Gasser S, Duffau H. Awake surgery for WHO grade II gliomas within “noneloquent” areas in the left dominant hemisphere: toward a “supratotal” resection. J Neurosurg. 2011;115:232–9.PubMedCrossRefGoogle Scholar
  118. 118.
    Pallud J, Fontaine D, Duffau H, Mandonnet E, Sanai N, Taillandier L, et al. Natural history of incidental WHO grade II gliomas. Ann Neurol. 2010;68:727–33.PubMedCrossRefGoogle Scholar
  119. 119.
    Duffau H. Awake surgery for incidental WHO grade II gliomas involving eloquent areas. Acta Neurochir (Wien). 2012;154:575–84.CrossRefGoogle Scholar
  120. 120.
    Duffau H. The rationale to perform early resection in incidental diffuse low-grade glioma: towards a “preventive surgical neurooncology”. World Neurosurg. 2012 (in press).Google Scholar
  121. 121.
    Duffau H. In: Duffau H, editor. Brain mapping: from neural basis of cognition to surgical applications. Wien/New York: Springer; 2011.Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Department of Neurosurgery, Gui de Chauliac HospitalMontpellier University Medical CenterMontpellier Cedex 5France
  2. 2.National Institute for Health and Medical Research (INSERM), U1051 Laboratory, Team “Brain Plasticity, Stem Cells and Glial Tumors”, Institute for Neurosciences of MontpellierMontpellier University Medical CenterMontpellierFrance

Personalised recommendations