Advertisement

Clinical Presentation in Diffuse Low-Grade Gliomas

  • Juan Torres-Reveron
  • Joseph M. PiepmeierEmail author
  • Kevin P. Becker
Chapter

Abstract

Diffuse low-grade gliomas (DLGG) are primary brain tumors that typically arise in adults. Seizures are the most common presenting symptom. Management decisions are determined by tumor size, location, imaging characteristics, and histopathological findings. Most DLGG ultimately progress to high-grade lesions, and the events leading to this transition are the subject of active investigation. MRI is the standard imaging modality for assessing the progression of these tumors. New advances in imaging technologies now allow for multimodal evaluation of their phenotype based on metabolism and improved prediction regarding anaplastic transformation. A typical case is presented along with discussion of commonly encountered neurological syndromes. Conventional imaging technologies as well as new areas are discussed briefly.

Keywords

Seizures Perfusion imaging Disconnection syndrome Spectroscopy Positron emission 

References

  1. 1.
    Central brain tumor registry of the United States. Primary brain tumors in the United Stated Statistical Report 2004–2006 years data collected. Feb 2010. Accessed at http://www.cbtrus.org/2011-NPCR-SEER/WEB-0407-Report-3-3-2011.pdf.
  2. 2.
    Sanai N, Chang S, Berger M. Low-grade gliomas in adults: a review. J Neurosurg. 2011;115:948–65.PubMedCrossRefGoogle Scholar
  3. 3.
    Potts M, Smith J, Molinaro A, Berger M. Natural history and surgical management of incidentally discovered low-grade gliomas. J Neurosurg. 2012;116:365–72.PubMedCrossRefGoogle Scholar
  4. 4.
    Daumas-Duport C, Scheithauer BW, Kelly PJ. A histologic and cytologic method for the spatial definition of gliomas. Mayo Clin Proc. 1987;62:435–49.PubMedCrossRefGoogle Scholar
  5. 5.
    Rothstein JD, Brem H. Excitotoxic destruction facilitates brain tumor growth. Nat Med. 2001;7:994–5.PubMedCrossRefGoogle Scholar
  6. 6.
    Jentoft M, Giannini C, Cen L, Scheithauer B, Hoesley B, Sarkaria J, et al. Phenotypic variations in NF1-associated low grade astrocytomas: possible role for increased mTOR activation in a subset. Int J Clin Exp Pathol. 2010;4:43–57.PubMedGoogle Scholar
  7. 7.
    Chang E, Smith J, Chang S, Lamborn S, Prados M, Butowski N, et al. Preoperative prognostic classification system for hemispheric low-grade gliomas in adults. J Neurosurg. 2008;109:817–24.PubMedCrossRefGoogle Scholar
  8. 8.
    Smith JS, Chang EF, Lamborn KR, Chang SM, Prados MD, Cha S, et al. Role of extent of resection in the long-term outcome of low-grade hemispheric gliomas. J Clin Oncol. 2008;26:1338–45.PubMedCrossRefGoogle Scholar
  9. 9.
    Rees J, Watt H, Jäger HR, Benton C, Tozer D, Tofts P, et al. Volumes and growth rates of untreated adult low-grade gliomas indicate risk of early malignant transformation. Eur J Radiol. 2009;72:54–64.PubMedCrossRefGoogle Scholar
  10. 10.
    Pamir MN, Ozduman K, Dinçer A, Yildiz E, Peker S, Ozek MM. First intraoperative, shared-resource, ultrahigh-field 3-Tesla magnetic resonance imaging system and its application in los-grade glioma resection. J Neurosurg. 2010;112:57–69.PubMedCrossRefGoogle Scholar
  11. 11.
    Lee YY, Van Tassel P. Intracranial oligodendrogliomas: imaging findings in 35 untreated cases. AJR Am J Roentgenol. 1989;152:361–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Lote K, Egeland T, Hager B, Skullerud K, Hirschberg H. Prognostic significance of CT contrast enhancement within histological subgroups of intracranial glioma. J Neurooncol. 1998;40:161–70.PubMedCrossRefGoogle Scholar
  13. 13.
    Chaichana KL, McGirt MJ, Niranjan A, Olivi A, Burger PC, Quinones-Hinojosa A. Prognostic significant of contrast-enhancing low-grade gliomas in adults and a review of the literature. Neurol Res. 2009;31:931–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Tofts PS, Benton CE, Weil RS, Tozer DJ, Altmann DR, Jäger HR, et al. Quantitative analysis of whole-tumor Gd enhancement histograms predicts malignant transformation in low-grade gliomas. J Magn Reson Imaging. 2007;25:208–14.PubMedCrossRefGoogle Scholar
  15. 15.
    Price SJ. Advances in imaging low-grade gliomas. Adv Tech Stand Neurosurg. 2010;35:1–34.PubMedCrossRefGoogle Scholar
  16. 16.
    McBride DQ, Miller BL, Nikas DL, Buchthal S, Chang L, Chiang F, et al. Analysis of brain tumors using 1H magnetic resonance spectroscopy. Surg Neurol. 1995;44:137–44.PubMedCrossRefGoogle Scholar
  17. 17.
    Möller-Hartmann W, Herminghaus S, Krings T, Marquardt G, Lanfermann H, Pilatus U, et al. Clinical application of proton magnetic resonance spectroscopy in the diagnosis of intracranial mass lesions. Neuroradiology. 2002;44:371–81.PubMedCrossRefGoogle Scholar
  18. 18.
    Devos A, Lukas L, Suykens JA, Vanhamme L, Tate AR, Howe FA, et al. Classification of brain tumours using short echo time 1H MR spectra. J Magn Reson. 2004;170:164–75.PubMedCrossRefGoogle Scholar
  19. 19.
    Lukas L, Devos A, Suykens JA, Vanhamme L, Howe FA, Majós C, et al. Brain tumor classification based on long echo proton MRS signals. Artif Intell Med. 2004;31:73–89.PubMedCrossRefGoogle Scholar
  20. 20.
    Hlaihel C, Guilloton L, Guyotat J, Streichenberger N, Honnorat J, Cotton F. Predictive value of multimodality MRI using conventional, perfusion, and spectroscopy MR in anaplastic transformation of low-grade oligodendrogliomas. J Neurooncol. 2010;97:73–80.PubMedCrossRefGoogle Scholar
  21. 21.
    Law M, Yang S, Wang H, Babb JS, Johnson G, Cha S, et al. Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol. 2003;24:1989–98.PubMedGoogle Scholar
  22. 22.
    Aronen HJ, Gazit IE, Louis DN, Buchbinder BR, Pardo FS, Weisskoff RM, et al. Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology. 1994;191:41–51.PubMedGoogle Scholar
  23. 23.
    Aronen HJ, Pardo FS, Kennedy DN, Belliveau JW, Packard SD, Hsu DW, et al. High microvascular blood volume is associated with high glucose uptake and tumor angiogenesis in human gliomas. Clin Cancer Res. 2000;6:2189–200.PubMedGoogle Scholar
  24. 24.
    Sugahara T, Korogi Y, Kochi M, Ikushima I, Hirai T, Okuda T, et al. Correlation of MR imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas. AJR Am J Roentgenol. 1998;171:1479–786.PubMedCrossRefGoogle Scholar
  25. 25.
    Donahue KM, Krower HG, Rand SD, Pathak AP, Marszalkowski CS, Censky SC, et al. Utility of simultaneously acquired gradient-echo and spin-echo cerebral blood volume and morphology maps in brain tumor patients. Magn Reson Med. 2000;43:845–53.PubMedCrossRefGoogle Scholar
  26. 26.
    Knopp EA, Cha S, Johnson G, Mazumdar A, Golfinos JG, Zagzag D, et al. Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging. Radiology. 1999;211:791–8.PubMedGoogle Scholar
  27. 27.
    Shin JH, Lee HK, Kwun BD, Kim JS, Kang W, Choi GG, et al. Using relative cerebral blood flow and volume to evaluate the histopathologic grade of cerebral gliomas: preliminary results. AJR Am J Roentgenol. 2002;179:783–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Cha S, Tihan T, Crawford F, Fischbein NJ, Chang S, Bollen A, et al. Differentiation of low-grade oligodendrogliomas from low-grade astrocytomas by using quantitative blood-volume measurements derived from dynamic susceptibility contrast-enhanced MR imaging. AJNR Am J Neuroradiol. 2005;26:266–73.PubMedGoogle Scholar
  29. 29.
    Faehndrich J, Weidauer S, Pilatus U, Oszvald A, Zanella FE, Hattingen E. Neuroradiological viewpoint on the diagnostics of space-occupying brain lesions. Clin Neuroradiol. 2011;21:123–39.PubMedCrossRefGoogle Scholar
  30. 30.
    Padma MV, Said S, Jacobs M, Hwang DR, Dunigan K, Satter M, et al. Prediction of pathology and ­survival by FDG PET in gliomas. J Neurooncol. 2003;64:227–37.PubMedCrossRefGoogle Scholar
  31. 31.
    DeWitte O, Levivier M, Violon P, Salmon I, Damhaut P, Wikler Jr D, et al. Prognostic value positron emission tomography with [18F]fluoro-2-deoxy-D-glucose in the low-grade glioma. Neurosurgery. 1996;39:470–7.Google Scholar
  32. 32.
    Ricci PE, Karis JP, Heiserman JE, Fram EK, Bice AN, Drayer BP. Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of positron emission tomography? AJNR Am J Neuroradiol. 1998;19:407–13.PubMedGoogle Scholar
  33. 33.
    Spence AM, Muzi M, Mankoff DA, O’Sullivan SF, Link JM, Lewellen TK, et al. 18F-FDG Pet of gliomas at delayed intervals: improved distinction between tumor and normal grey matter. J Nucl Med. 2004;45:1653–9.PubMedGoogle Scholar
  34. 34.
    Wong TZ, Turkington TG, Hawk TC, Coleman RE. PET and brain tumor image fusion. Cancer J. 2004;10:234–42.PubMedCrossRefGoogle Scholar
  35. 35.
    Isselbacher KJ. Sugar and amino acid transport be cells in culture- differences between normal and malignant cells. N Engl J Med. 1972;286:929–33.PubMedCrossRefGoogle Scholar
  36. 36.
    Busch H, Davis JR, Honig GR, Anderson DC, Nair PV, Nyhan WL. The uptake of a variety or amino acids into nuclear proteins and other tissues. Cancer Res. 1959;19:1030–9.PubMedGoogle Scholar
  37. 37.
    Ogawa T, Shishido F, Kanno I, Inugami A, Fujita H, Murakami M, et al. Cerebral glioma: evaluation with methionine PET. Radiology. 1993;186:45–53.PubMedGoogle Scholar
  38. 38.
    DeWitte O, Goldberg I, Wikler D, Rorive S, Damhaut P, Monclus M, et al. Positron emission tomography with injection of methionine as a prognostic factor in glioma. J Neurosurg. 2001;95:746–50.CrossRefGoogle Scholar
  39. 39.
    Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn-Crews JM, et al. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med. 1998;4:1334–6.PubMedCrossRefGoogle Scholar
  40. 40.
    Chen W, Cloughesy T, Kamdar N, Styamurthy N, Bergsneider M, Liau L, et al. Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med. 2005;46:945–52.PubMedGoogle Scholar
  41. 41.
    Choi SJ, Kim JS, Kim JH, Oh SJ, Lee JG, Kim CJ, et al. [18F]3′-deoxy-3′-fluorothymidine PET for the diagnosis and grading of brain tumors. Eur J Nucl Med Mol Imaging. 2005;32:653–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Price SJ, Fryer TD, Cleij MC, Dean AF, Joseph J, Salvador R, et al. Imaging regional variation of cellular proliferation in gliomas using 3′-deoxy-3′-[18F]fluorothymidine positron-emission tomography: an image guided biopsy study. Clin Radiol. 2009;64:52–63.PubMedCrossRefGoogle Scholar
  43. 43.
    van den Bent MJ, Wefel JS, Schiff D, Taphoorn MJ, Jaeckle K, Junck L, et al. Response assessment in neuro-oncology (a report of the RANO group): assessment of outcome in trials of diffuse low-grade gliomas. Lancet Oncol. 2011;12:583–93.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Juan Torres-Reveron
    • 1
  • Joseph M. Piepmeier
    • 1
    Email author
  • Kevin P. Becker
    • 2
  1. 1.Department of Neurosurgery, School of MedicineYale UniversityNew HavenUSA
  2. 2.Department of Neurology, School of MedicineYale UniversityNew HavenUSA

Personalised recommendations