Advertisement

Human Low-Grade Glioma Cultures

  • Daniela Cesselli
  • Antonio Paolo Beltrami
  • Anja Pucer
  • Evgenia Bourkoula
  • Tamara Ius
  • Marco Vindigni
  • Miran Skrap
  • Carlo Alberto BeltramiEmail author
Chapter

Abstract

Numerous diagnostic, prognostic, and therapeutic issues concerning low-grade gliomas still remain to be clarified. In this regard, in vitro and in vivo models of low-grade gliomas would represent a way to get insight into these crucial aspects. However, many of the in vitro and in vivo models assayed in the literature are focused on high-grade gliomas.

For this reason, in this chapter we reviewed the literature on low-grade glioma culture describing the results so far obtained, highlighting limitations and envisioning promising innovative directions that research is undertaking in this critical field.

Specifically, first, we critically presented the conventional methods adopted to study low-grade gliomas, such as continuous human tumor cell lines and short-term glioma cultures. Then, we discussed the culture methods utilized to isolate and in vitro expand glioma cancer stem cells from adult and pediatric tumors, underlining the need of optimizing new culture conditions because of the partial failure of the simple transfer to low-grade gliomas of the methods efficient in isolating glioma stem cells from high-grade gliomas. Finally, we presented the innovative, although still in its infancy, possibility to culture nonneoplastic stromal cells as a way to obtain cell lines representative of the biological behavior of the patient tumors.

In conclusion, the aim of this chapter was to explain why the culture of patient-derived cancer cells represents a unique opportunity to create in vitro and in vivo models closely mimicking the biological properties of the patient tumor, thus allowing a patient-based approach.

Keywords

Low-grade glioma Cell culture Immortalized cell lines Glioma-derived tumor-initiating cells Neurospheres CD133 Tumor-associated ­parenchymal cell lines Personalized medicine 

Abbreviations

BCNU

1,3-bis(2-chloroethyl)-1-nitrosourea

bFGF

Basic fibroblast-derived growth ­factor

CAF

Cancer-associated fibroblast

CSC

Cancer stem cell

EGF

Epithelial-derived growth factor

GBM

Glioblastoma

GFAP

Glial fibrillary acidic protein

GSC

Glioma stem cell

LGG

Low-grade glioma

MASC

Multipotent adult stem cells

MGMT

O6–methylguanine–DNA ­methyltransferase

PDGF

Platelet-derived growth factor

TAF

Tumor-associated fibroblast

TMZ

Temozolomide

Notes

Acknowledgments

FIRB accordi di programma 2011; title: “FIERCE – FInd nEw moleculaR and CEllular targets against cancer.” Pr. RBAP11Z4Z9. 2012–2014; FIRB accordi di programma 2011 pr. RBAP11ETKA_007 “Nanotechnological approaches for tumor theragnostic.” Programma per la Cooperazione Transfrontaliera Italia–Slovenia 2007–2013. Title: “Identificazione di nuovi marcatori di cellule staminali tumorali a scopo diagnostico e terapeutico.”

References

  1. 1.
    Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, Hahn WC, Ligon KL, Louis DN, Brennan C, Chin L, DePinho RA, Cavenee WK. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 2007;21(21):2683–710.PubMedCrossRefGoogle Scholar
  2. 2.
    Pouratian N, Schiff D. Management of low-grade glioma. Curr Neurol Neurosci Rep. 2010;10(3):224–31.PubMedCrossRefGoogle Scholar
  3. 3.
    Soffietti R, Baumert BG, Bello L, von Deimling A, Duffau H, Frenay M, Grisold W, Grant R, Graus F, Hoang-Xuan K, Klein M, Melin B, Rees J, Siegal T, Smits A, Stupp R, Wick W. Guidelines on management of low-grade gliomas: report of an EFNS-EANO Task Force. Eur J Neurol. 2010;17(9):1124–33.PubMedCrossRefGoogle Scholar
  4. 4.
    Cancer Genome Atlas Research Network. Com­prehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455(7216):1061–8.CrossRefGoogle Scholar
  5. 5.
    Mischel PS, Shai R, Shi T, Horvath S, Lu KV, Choe G, Seligson D, Kremen TJ, Palotie A, Liau LM, Cloughesy TF, Nelson SF. Identification of molecular subtypes of glioblastoma by gene expression profiling. Oncogene. 2003;22(15):2361–73.PubMedCrossRefGoogle Scholar
  6. 6.
    Louis DN. Molecular pathology of malignant gliomas. Annu Rev Pathol. 2006;1:97–117.PubMedCrossRefGoogle Scholar
  7. 7.
    Maher EA, Brennan C, Wen PY, Durso L, Ligon KL, Richardson A, Khatry D, Feng B, Sinha R, Louis DN, Quackenbush J, Black PM, Chin L, DePinho RA. Marked genomic differences characterize primary and secondary glioblastoma subtypes and identify two distinct molecular and clinical secondary glioblastoma entities. Cancer Res. 2006;66(23):11502–13.PubMedCrossRefGoogle Scholar
  8. 8.
    Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, Misra A, Nigro JM, Colman H, Soroceanu L, Williams PM, Modrusan Z, Feuerstein BG, Aldape K. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell. 2006;9(3):157–73.PubMedCrossRefGoogle Scholar
  9. 9.
    Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, Olivi A, McLendon R, Rasheed BA, Keir S, Nikolskaya T, Nikolsky Y, Busam DA, Tekleab H, Diaz Jr LA, Hartigan J, Smith DR, Strausberg RL, Marie SK, Shinjo SM, Yan H, Riggins GJ, Bigner DD, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008;321(5897):1807–12.PubMedCrossRefGoogle Scholar
  10. 10.
    Ducray F, El Hallani S, Idbaih A. Diagnostic and prognostic markers in gliomas. Curr Opin Oncol. 2009;21(6):537–42.PubMedCrossRefGoogle Scholar
  11. 11.
    Sanson M, Marie Y, Paris S, Idbaih A, Laffaire J, Ducray F, El Hallani S, Boisselier B, Mokhtari K, Hoang-Xuan K, Delattre JY. Isocitrate dehydrogenase 1 codon 132 mutation is an important prognostic biomarker in gliomas. J Clin Oncol. 2009;27(25):4150–4.PubMedCrossRefGoogle Scholar
  12. 12.
    Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB. Identification of human brain tumour initiating cells. Nature. 2004;432(7015):396–401.PubMedCrossRefGoogle Scholar
  13. 13.
    Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, Fiocco R, Foroni C, Dimeco F, Vescovi A. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 2004;64:7011–21.PubMedCrossRefGoogle Scholar
  14. 14.
    Yang B, Wu X, Mao Y, Bao W, Gao L, Zhou P, Xie R, Zhou L, Zhu J. Dual-targeted antitumor effects against brainstem glioma by intravenous delivery of tumor necrosis factor-related, apoptosis-inducing, ligand-engineered human mesenchymal stem cells. Neurosurgery. 2009;65(3):610–24; discussion 624.PubMedCrossRefGoogle Scholar
  15. 15.
    Roger M, Clavreul A, Venier-Julienne MC, Passirani C, Montero-Menei C, Menei P. The potential of combinations of drug-loaded nanoparticle systems and adult stem cells for glioma therapy. Biomaterials. 2011;32(8):2106–16.PubMedCrossRefGoogle Scholar
  16. 16.
    Sasportas LS, Kasmieh R, Wakimoto H, Hingtgen S, van de Water JA, Mohapatra G, Figueiredo JL, Martuza RL, Weissleder R, Shah K. Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proc Natl Acad Sci USA. 2009;106(12):4822–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Rasanen K, Vaheri A. Activation of fibroblasts in cancer stroma. Exp Cell Res. 2010;316(17):2713–22.PubMedCrossRefGoogle Scholar
  18. 18.
    Pietras K, Ostman A. Hallmarks of cancer: interactions with the tumor stroma. Exp Cell Res. 2010;316(8):1324–31.PubMedCrossRefGoogle Scholar
  19. 19.
    Spaeth EL, Dembinski JL, Sasser AK, Watson K, Klopp A, Hall B, Andreeff M, Marini F. Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS One. 2009;4(4):e4992.PubMedCrossRefGoogle Scholar
  20. 20.
    Kim SM, Kang SG, Park NR, Mok HS, Huh YM, Lee SJ, Jeun SS, Hong YK, Park CK, Lang FF. Presence of glioma stroma mesenchymal stem cells in a murine orthotopic glioma model. Childs Nerv Syst. 2011;27(6):911–22.PubMedCrossRefGoogle Scholar
  21. 21.
    Beltrami AP, Cesselli D, Bergamin N, Marcon P, Rigo S, Puppato E, D’Aurizio F, Verardo R, Piazza S, Pignatelli A, Poz A, Baccarani U, Damiani D, Fanin R, Mariuzzi L, Finato N, Masolini P, Burelli S, Belluzzi O, Schneider C, Beltrami CA. Multipotent cells can be generated in vitro from several adult human organs (heart, liver, and bone marrow). Blood. 2007;110(9):3438–46.PubMedCrossRefGoogle Scholar
  22. 22.
    Cesselli D, Beltrami AP, Rigo S, Bergamin N, D’Aurizio F, Verardo R, Piazza S, Klaric E, Fanin R, Toffoletto B, Marzinotto S, Mariuzzi L, Finato N, Pandolfi M, Leri A, Schneider C, Beltrami CA, Anversa P. Multipotent progenitor cells are present in human peripheral blood. Circ Res. 2009;104(10):1225–34.PubMedCrossRefGoogle Scholar
  23. 23.
    Cesselli D, Odreman F, Musiello D, Gallelli A, Beltrami AP, Ius T, Vindigni M, Skrap M, Vindigni A, Beltrami CA. Proteomics of stem cell lines obtained from low- and high-grade human astrocytomas. Cell Oncol. 2008;30(2):123–4.Google Scholar
  24. 24.
    Musiello D, Gallelli A, Marzinotto S, Puppato E, Toffoletto B, Ius T, Vindigni M, Beltrami AP, Cesselli D, Skrap M, Beltrami CA. Isolation, characterization and comparison of cancer stem cells obtained from low-grade astrocytomas and their recurrences. Cell Oncol. 2008;30(2):140–1.Google Scholar
  25. 25.
    Musiello D, Gallelli A, Puppato E, Toffoletto B, Ius T, Vindigni M, Beltrami AP, Cesselli D, Skrap M, Beltrami CA. A new method to isolate and in vitro expand cancer stem cells from human gliomas. Cell Oncol. 2008;30(2):124–4.Google Scholar
  26. 26.
    Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, Pastorino S, Purow BW, Christopher N, Zhang W, Park JK, Fine HA. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell. 2006;9(5):391–403.PubMedCrossRefGoogle Scholar
  27. 27.
    Chabner BA, Roberts Jr TG. Timeline: chemotherapy and the war on cancer. Nat Rev Cancer. 2005;5(1):65–72.PubMedCrossRefGoogle Scholar
  28. 28.
    Huang Q, Zhang QB, Dong J, Wu YY, Shen YT, Zhao YD, Zhu YD, Diao Y, Wang AD, Lan Q. Glioma stem cells are more aggressive in recurrent tumors with malignant progression than in the primary tumor, and both can be maintained long-term in vitro. BMC Cancer. 2008;8:304.PubMedCrossRefGoogle Scholar
  29. 29.
    Potter NE, Phipps K, Harkness W, Hayward R, Thompson D, Jacques TS, Harding B, Thomas DG, Rees J, Darling JL, Warr TJ. Astrocytoma derived short-term cell cultures retain molecular signatures characteristic of the tumour in situ. Exp Cell Res. 2009;315(16):2835–46.PubMedCrossRefGoogle Scholar
  30. 30.
    Lewandowicz GM, Harding B, Harkness W, Hayward R, Thomas DG, Darling JL. Chemosensitivity in childhood brain tumours in vitro: evidence of differential sensitivity to lomustine (CCNU) and vincristine. Eur J Cancer. 2000;36(15):1955–64.PubMedCrossRefGoogle Scholar
  31. 31.
    Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105–11.PubMedCrossRefGoogle Scholar
  32. 32.
    Chen R, Nishimura MC, Bumbaca SM, Kharbanda S, Forrest WF, Kasman IM, Greve JM, Soriano RH, Gilmour LL, Rivers CS, Modrusan Z, Nacu S, Guerrero S, Edgar KA, Wallin JJ, Lamszus K, Westphal M, Heim S, James CD, VandenBerg SR, Costello JF, Moorefield S, Cowdrey CJ, Prados M, Phillips HS. A hierarchy of self-renewing tumor-­initiating cell types in glioblastoma. Cancer Cell. 2010;17(4):362–75.PubMedCrossRefGoogle Scholar
  33. 33.
    Pollard SM, Yoshikawa K, Clarke ID, Danovi D, Stricker S, Russell R, Bayani J, Head R, Lee M, Bernstein M, Squire JA, Smith A, Dirks P. Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell. 2009;4(6):568–80.PubMedCrossRefGoogle Scholar
  34. 34.
    Wan F, Zhang S, Xie R, Gao B, Campos B, Herold-Mende C, Lei T. The utility and limitations of neurosphere assay, CD133 immunophenotyping and side population assay in glioma stem cell research. Brain Pathol. 2010;20(5):877–89.PubMedGoogle Scholar
  35. 35.
    Fael Al-Mayhani TM, Ball SL, Zhao JW, Fawcett J, Ichimura K, Collins PV, Watts C. An efficient method for derivation and propagation of glioblastoma cell lines that conserves the molecular profile of their original tumours. J Neurosci Methods. 2009;176(2):192–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.PubMedCrossRefGoogle Scholar
  37. 37.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.PubMedCrossRefGoogle Scholar
  38. 38.
    Polyak K, Haviv I, Campbell IG. Co-evolution of tumor cells and their microenvironment. Trends Genet. 2009;25(1):30–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Shimoda M, Mellody KT, Orimo A. Carcinoma-associated fibroblasts are a rate-limiting determinant for tumour progression. Semin Cell Dev Biol. 2010;21(1):19–25.PubMedCrossRefGoogle Scholar
  40. 40.
    Franco OE, Shaw AK, Strand DW, Hayward SW. Cancer associated fibroblasts in cancer pathogenesis. Semin Cell Dev Biol. 2010;21(1):33–9.PubMedCrossRefGoogle Scholar
  41. 41.
    LeBeau AM, Brennen WN, Aggarwal S, Denmeade SR. Targeting the cancer stroma with a fibroblast activation protein-activated promelittin protoxin. Mol Cancer Ther. 2009;8(5):1378–86.PubMedCrossRefGoogle Scholar
  42. 42.
    Gonda TA, Varro A, Wang TC, Tycko B. Molecular biology of cancer-associated fibroblasts: can these cells be targeted in anti-cancer therapy? Semin Cell Dev Biol. 2010;21(1):2–10.PubMedCrossRefGoogle Scholar
  43. 43.
    Paunescu V, Bojin FM, Tatu CA, Gavriliuc OI, Rosca A, Gruia AT, Tanasie G, Bunu C, Crisnic D, Gherghiceanu M, Tatu FR, Tatu CS, Vermesan S. Tumour-associated fibroblasts and mesenchymal stem cells: more similarities than differences. J Cell Mol Med. 2011;15(3):635–46.PubMedCrossRefGoogle Scholar
  44. 44.
    Cesselli D, Beltrami AP, Poz A, Marzinotto S, Comisso E, Bergamin N, Bourkoula E, Pucer A, Puppato E, Toffoletto B, Sorrentino M, Baccarani U, Avellini C, Beltrami CA. Role of tumor associated fibroblasts in human liver regeneration, cirrhosis, and cancer. Int J Hepatol. 2011;2011:120925.PubMedGoogle Scholar
  45. 45.
    Charles NA, Holland EC, Gilbertson R, Glass R, Kettenmann H. The brain tumor microenvironment. Glia. 2011;59(8):1169–80.PubMedCrossRefGoogle Scholar
  46. 46.
    Buffo A, Rite I, Tripathi P, Lepier A, Colak D, Horn AP, Mori T, Gotz M. Origin and progeny of reactive gliosis: a source of multipotent cells in the injured brain. Proc Natl Acad Sci USA. 2008;105(9):3581–6.PubMedCrossRefGoogle Scholar
  47. 47.
    Robel S, Berninger B, Gotz M. The stem cell potential of glia: lessons from reactive gliosis. Nat Rev Neurosci. 2011;12(2):88–104.PubMedCrossRefGoogle Scholar
  48. 48.
    Fomchenko EI, Dougherty JD, Helmy KY, Katz AM, Pietras A, Brennan C, Huse JT, Milosevic A, Holland EC. Recruited cells can become transformed and overtake PDGF-induced murine gliomas in vivo during tumor progression. PLoS One. 2011;6(7):e20605.PubMedCrossRefGoogle Scholar
  49. 49.
    Beier D, Schulz JB, Beier CP. Chemoresistance of glioblastoma cancer stem cells – much more complex than expected. Mol Cancer. 2011;10:128.PubMedCrossRefGoogle Scholar
  50. 50.
    Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ, Aigner L, Brawanski A, Bogdahn U, Beier CP. CD133(+) and CD133(−) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res. 2007;67(9):4010–5.PubMedCrossRefGoogle Scholar
  51. 51.
    Lathia JD, Gallagher J, Heddleston JM, Wang J, Eyler CE, Macswords J, Wu Q, Vasanji A, McLendon RE, Hjelmeland AB, Rich JN. Integrin alpha 6 regulates glioblastoma stem cells. Cell Stem Cell. 2010;6(5):421–32.PubMedCrossRefGoogle Scholar
  52. 52.
    Ogden AT, Waziri AE, Lochhead RA, Fusco D, Lopez K, Ellis JA, Kang J, Assanah M, McKhann GM, Sisti MB, McCormick PC, Canoll P, Bruce JN. Identification of A2B5  +  CD133- tumor-initiating cells in adult human gliomas. Neurosurgery. 2008;62(2):505–14; discussion 514–5.PubMedCrossRefGoogle Scholar
  53. 53.
    Read TA, Fogarty MP, Markant SL, McLendon RE, Wei Z, Ellison DW, Febbo PG, Wechsler-Reya RJ. Identification of CD15 as a marker for tumor-­propagating cells in a mouse model of medulloblastoma. Cancer Cell. 2009;15(2):135–47.PubMedCrossRefGoogle Scholar
  54. 54.
    Son MJ, Woolard K, Nam DH, Lee J, Fine HA. SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma. Cell Stem Cell. 2009;4(5):440–52.PubMedCrossRefGoogle Scholar
  55. 55.
    Li A, Walling J, Kotliarov Y, Center A, Steed ME, Ahn SJ, Rosenblum M, Mikkelsen T, Zenklusen JC, Fine HA. Genomic changes and gene expression profiles reveal that established glioma cell lines are poorly representative of primary human gliomas. Mol Cancer Res. 2008;6(1):21–30.PubMedCrossRefGoogle Scholar
  56. 56.
    Song H, Moon A. Glial cell-derived neurotrophic factor (GDNF) promotes low-grade Hs683 glioma cell migration through JNK, ERK-1/2 and p38 MAPK signaling pathways. Neurosci Res. 2006;56(1):29–38.PubMedCrossRefGoogle Scholar
  57. 57.
    Konduri SD, Rao CN, Chandrasekar N, Tasiou A, Mohanam S, Kin Y, Lakka SS, Dinh D, Olivero WC, Gujrati M, Foster DC, Kisiel W, Rao JS. A novel function of tissue factor pathway inhibitor-2 (TFPI-2) in human glioma invasion. Oncogene. 2001;20(47):6938–45.PubMedCrossRefGoogle Scholar
  58. 58.
    Bhattacharya A, Lakka SS, Mohanam S, Boyd D, Rao JS. Regulation of the urokinase-type plasminogen activator receptor gene in different grades of human glioma cell lines. Clin Cancer Res. 2001;7(2):267–76.PubMedGoogle Scholar
  59. 59.
    Emdad L, Lee SG, Su ZZ, Jeon HY, Boukerche H, Sarkar D, Fisher PB. Astrocyte elevated gene-1 (AEG-1) functions as an oncogene and regulates angiogenesis. Proc Natl Acad Sci USA. 2009;106(50):21300–5.PubMedCrossRefGoogle Scholar
  60. 60.
    Branle F, Lefranc F, Camby I, Jeuken J, Geurts-Moespot A, Sprenger S, Sweep F, Kiss R, Salmon I. Evaluation of the efficiency of chemotherapy in in vivo orthotopic models of human glioma cells with and without 1p19q deletions and in C6 rat orthotopic allografts serving for the evaluation of surgery combined with chemotherapy. Cancer. 2002;95(3):641–55.PubMedCrossRefGoogle Scholar
  61. 61.
    Lamoral-Theys D, Le Mercier M, Le Calve B, Rynkowski MA, Bruyere C, Decaestecker C, Haibe-Kains B, Bontempi G, Dubois J, Lefranc F, Kiss R. Long-term temozolomide treatment induces marked amino metabolism modifications and an increase in TMZ sensitivity in Hs683 oligodendroglioma cells. Neoplasia. 2010;12(1):69–79.PubMedGoogle Scholar
  62. 62.
    Le Mercier M, Mathieu V, Haibe-Kains B, Bontempi G, Mijatovic T, Decaestecker C, Kiss R, Lefranc F. Knocking down galectin 1 in human hs683 ­glioblastoma cells impairs both angiogenesis and endoplasmic reticulum stress responses. J Neuropathol Exp Neurol. 2008;67(5):456–69.PubMedGoogle Scholar
  63. 63.
    Le Mercier M, Lefranc F, Mijatovic T, Debeir O, Haibe-Kains B, Bontempi G, Decaestecker C, Kiss R, Mathieu V. Evidence of galectin-1 involvement in glioma chemoresistance. Toxicol Appl Pharmacol. 2008;229(2):172–83.PubMedCrossRefGoogle Scholar
  64. 64.
    Debinski W, Gibo DM. Fos-related antigen 1 modulates malignant features of glioma cells. Mol Cancer Res. 2005;3(4):237–49.PubMedGoogle Scholar
  65. 65.
    Bobola MS, Silber JR, Ellenbogen RG, Geyer JR, Blank A, Goff RD. O6-methylguanine-DNA methyltransferase, O6-benzylguanine, and resistance to clinical alkylators in pediatric primary brain tumor cell lines. Clin Cancer Res. 2005;11(7):2747–55.PubMedCrossRefGoogle Scholar
  66. 66.
    Gaspar N, Marshall L, Perryman L, Bax DA, Little SE, Viana-Pereira M, Sharp SY, Vassal G, Pearson AD, Reis RM, Hargrave D, Workman P, Jones C. MGMT-independent temozolomide resistance in pediatric glioblastoma cells associated with a PI3-kinase-mediated HOX/stem cell gene signature. Cancer Res. 2010;70(22):9243–52.PubMedCrossRefGoogle Scholar
  67. 67.
    Bax DA, Little SE, Gaspar N, Perryman L, Marshall L, Viana-Pereira M, Jones TA, Williams RD, Grigoriadis A, Vassal G, Workman P, Sheer D, Reis RM, Pearson AD, Hargrave D, Jones C. Molecular and phenotypic characterisation of paediatric glioma cell lines as models for preclinical drug development. PLoS One. 2009;4(4):e5209.PubMedCrossRefGoogle Scholar
  68. 68.
    Blough MD, Beauchamp DC, Westgate MR, Kelly JJ, Cairncross JG. Effect of aberrant p53 function on temozolomide sensitivity of glioma cell lines and brain tumor initiating cells from glioblastoma. J Neurooncol. 2011;102(1):1–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Kondo T, Setoguchi T, Taga T. Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci USA. 2004;101(3):781–6.PubMedCrossRefGoogle Scholar
  70. 70.
    Wu A, Oh S, Wiesner SM, Ericson K, Chen L, Hall WA, Champoux PE, Low WC, Ohlfest JR. Persistence of CD133+ cells in human and mouse glioma cell lines: detailed characterization of GL261 glioma cells with cancer stem cell-like properties. Stem Cells Dev. 2008;17(1):173–84.PubMedCrossRefGoogle Scholar
  71. 71.
    Villalva C, Martin-Lanneree S, Cortes U, Dkhissi F, Wager M, Le Corf A, Tourani JM, Dusanter-Fourt I, Turhan AG, Karayan-Tapon L. STAT3 is essential for the maintenance of neurosphere-initiating tumor cells in patients with glioblastomas: a potential for targeted therapy? Int J Cancer. 2011;128(4):826–38.PubMedCrossRefGoogle Scholar
  72. 72.
    Hsieh A, Ellsworth R, Hsieh D. Hedgehog/GLI1 regulates IGF dependent malignant behaviors in glioma stem cells. J Cell Physiol. 2011;226(4):1118–27.PubMedCrossRefGoogle Scholar
  73. 73.
    Mihaliak AM, Gilbert CA, Li L, Daou MC, Moser RP, Reeves A, Cochran BH, Ross AH. Clinically relevant doses of chemotherapy agents reversibly block ­formation of glioblastoma neurospheres. Cancer Lett. 2010;296(2):168–77.PubMedCrossRefGoogle Scholar
  74. 74.
    Gilbert CA, Daou MC, Moser RP, Ross AH. Gamma-secretase inhibitors enhance temozolomide treatment of human gliomas by inhibiting neurosphere repopulation and xenograft recurrence. Cancer Res. 2010;70(17):6870–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Mehrian Shai R, Reichardt JK, Ya-Hsuan H, Kremen TJ, Liau LM, Cloughesy TF, Mischel PS, Nelson SF. Robustness of gene expression profiling in glioma specimen samplings and derived cell lines. Brain Res Mol Brain Res. 2005;136(1–2):99–103.PubMedCrossRefGoogle Scholar
  76. 76.
    Lolait SJ, Harmer JH, Auteri G, Pedersen JS, Toh BH. Expression of glial fibrillary acidic protein, actin, fibronectin and factor VIII antigen in human astrocytomas. Pathology. 1983;15(4):373–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Vescovi AL, Galli R, Reynolds BA. Brain tumour stem cells. Nat Rev Cancer. 2006;6(6):425–36.PubMedCrossRefGoogle Scholar
  78. 78.
    Zeppernick F, Ahmadi R, Campos B, Dictus C, Helmke BM, Becker N, Lichter P, Unterberg A, Radlwimmer B, Herold-Mende CC. Stem cell marker CD133 affects clinical outcome in glioma patients. Clin Cancer Res. 2008;14(1):123–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Shmelkov SV, St Clair R, Lyden D, Rafii S. AC133/CD133/Prominin-1. Int J Biochem Cell Biol. 2005;37(4):715–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756–60.PubMedCrossRefGoogle Scholar
  81. 81.
    Bleau AM, Hambardzumyan D, Ozawa T, Fomchenko EI, Huse JT, Brennan CW, Holland EC. PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell. 2009;4(3):226–35.PubMedCrossRefGoogle Scholar
  82. 82.
    Kemper K, Sprick MR, de Bree M, Scopelliti A, Vermeulen L, Hoek M, Zeilstra J, Pals ST, Mehmet H, Stassi G, Medema JP. The AC133 epitope, but not the CD133 protein, is lost upon cancer stem cell differentiation. Cancer Res. 2010;70(2):719–29.PubMedCrossRefGoogle Scholar
  83. 83.
    Wang J, Sakariassen PO, Tsinkalovsky O, Immervoll H, Boe SO, Svendsen A, Prestegarden L, Rosland G, Thorsen F, Stuhr L, Molven A, Bjerkvig R, Enger PO. CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. Int J Cancer. 2008;122(4):761–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Joo KM, Kim SY, Jin X, Song SY, Kong DS, Lee JI, Jeon JW, Kim MH, Kang BG, Jung Y, Jin J, Hong SC, Park WY, Lee DS, Kim H, Nam DH. Clinical and biological implications of CD133-positive and CD133-negative cells in glioblastomas. Lab Invest. 2008;88(8):808–15.PubMedCrossRefGoogle Scholar
  85. 85.
    Gunther HS, Schmidt NO, Phillips HS, Kemming D, Kharbanda S, Soriano R, Modrusan Z, Meissner H, Westphal M, Lamszus K. Glioblastoma-derived stem cell-enriched cultures form distinct subgroups according to molecular and phenotypic criteria. Oncogene. 2008;27(20):2897–909.PubMedCrossRefGoogle Scholar
  86. 86.
    Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63(18):5821–8.PubMedGoogle Scholar
  87. 87.
    Rebetz J, Tian D, Persson A, Widegren B, Salford LG, Englund E, Gisselsson D, Fan X. Glial progenitor-like phenotype in low-grade glioma and enhanced CD133-expression and neuronal lineage differentiation potential in high-grade glioma. PLoS One. 2008;3(4):e1936.PubMedCrossRefGoogle Scholar
  88. 88.
    Persson AI, Petritsch C, Swartling FJ, Itsara M, Sim FJ, Auvergne R, Goldenberg DD, Vandenberg SR, Nguyen KN, Yakovenko S, Ayers-Ringler J, Nishiyama A, Stallcup WB, Berger MS, Bergers G, McKnight TR, Goldman SA, Weiss WA. Non-stem cell origin for oligodendroglioma. Cancer Cell. 2010;18(6):669–82.PubMedCrossRefGoogle Scholar
  89. 89.
    Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992;255(5052):1707–10.PubMedCrossRefGoogle Scholar
  90. 90.
    Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, Kornblum HI. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA. 2003;100(25):15178–83.PubMedCrossRefGoogle Scholar
  91. 91.
    Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD, Steindler DA. Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia. 2002;39(3):193–206.PubMedCrossRefGoogle Scholar
  92. 92.
    Yuan X, Curtin J, Xiong Y, Liu G, Waschsmann-Hogiu S, Farkas DL, Black KL, Yu JS. Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene. 2004;23(58):9392–400.PubMedCrossRefGoogle Scholar
  93. 93.
    Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, Pilotti S, Pierotii M, Diadone MG. Isolation and in vitro propagation of tumorigenic breast cancer cell with stem/progenitor cell properties. Cancer Res. 2005;65:5506–11.PubMedCrossRefGoogle Scholar
  94. 94.
    Kreso A, O’Brien CA. Colon cancer stem cells. Curr Protoc Stem Cell Biol. 2008;Chapter 3:Unit 3.1.PubMedGoogle Scholar
  95. 95.
    Louis SA, Rietze RL, Deleyrolle L, Wagey RE, Thomas TE, Eaves AC, Reynolds BA. Enumeration of neural stem and progenitor cells in the neural colony-forming cell assay. Stem Cells. 2008;26(4):988–96.PubMedCrossRefGoogle Scholar
  96. 96.
    Reynolds BA, Rietze RL. Neural stem cells and neurospheres – re-evaluating the relationship. Nat Methods. 2005;2(5):333–6.PubMedCrossRefGoogle Scholar
  97. 97.
    Laks DR, Masterman-Smith M, Visnyei K, Angenieux B, Orozco NM, Foran I, Yong WH, Vinters HV, Liau LM, Lazareff JA, Mischel PS, Cloughesy TF, Horvath S, Kornblum HI. Neurosphere formation is an independent predictor of clinical outcome in malignant glioma. Stem Cells. 2009;27(4):980–7.PubMedCrossRefGoogle Scholar
  98. 98.
    Reynolds BA, Vescovi AL. Brain cancer stem cells: think twice before going flat. Cell Stem Cell. 2009;5(5):466–7; author reply 468–9.PubMedCrossRefGoogle Scholar
  99. 99.
    Thirant C, Bessette B, Varlet P, Puget S, Cadusseau J, Tavares Sdos R, Studler JM, Silvestre DC, Susini A, Villa C, Miquel C, Bogeas A, Surena AL, Dias-Morais A, Leonard N, Pflumio F, Bieche I, Boussin FD, Sainte-Rose C, Grill J, Daumas-Duport C, Chneiweiss H, Junier MP. Clinical relevance of tumor cells with stem-like properties in pediatric brain tumors. PLoS One. 2011;6(1):e16375.PubMedCrossRefGoogle Scholar
  100. 100.
    Panosyan EH, Laks DR, Masterman-Smith M, Mottahedeh J, Yong WH, Cloughesy TF, Lazareff JA, Mischel PS, Moore TB, Kornblum HI. Clinical outcome in pediatric glial and embryonal brain tumors correlates with in vitro multi-passageable neurosphere formation. Pediatr Blood Cancer. 2010;55(4):644–51.PubMedCrossRefGoogle Scholar
  101. 101.
    De Witt Hamer PC, Van Tilborg AA, Eijk PP, Sminia P, Troost D, Van Noorden CJ, Ylstra B, Leenstra S. The genomic profile of human malignant glioma is altered early in primary cell culture and preserved in spheroids. Oncogene. 2008;27(14):2091–6.PubMedCrossRefGoogle Scholar
  102. 102.
    Conti L, Pollard SM, Gorba T, Reitano E, Toselli M, Biella G, Sun Y, Sanzone S, Ying QL, Cattaneo E, Smith A. Niche-independent symmetrical self-renewal of a mammalian tissue stem cell. PLoS Biol. 2005;3(9):e283.PubMedCrossRefGoogle Scholar
  103. 103.
    Sun Y, Pollard S, Conti L, Toselli M, Biella G, Parkin G, Willatt L, Falk A, Cattaneo E, Smith A. Long-term tripotent differentiation capacity of human neural stem (NS) cells in adherent culture. Mol Cell Neurosci. 2008;38(2):245–58.PubMedCrossRefGoogle Scholar
  104. 104.
    Jiang Y, Uhrbom L. On the origin of glioma. Ups J Med Sci. 2012;117(2):113–21.PubMedCrossRefGoogle Scholar
  105. 105.
    Liu C, Sage JC, Miller MR, Verhaak RG, Hippenmeyer S, Vogel H, Foreman O, Bronson RT, Nishiyama A, Luo L, Zong H. Mosaic analysis with double markers reveals tumor cell of origin in glioma. Cell. 2011;146(2):209–21.PubMedCrossRefGoogle Scholar
  106. 106.
    Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, Alexe G, Lawrence M, O’Kelly M, Tamayo P, Weir BA, Gabriel S, Winckler W, Gupta S, Jakkula L, Feiler HS, Hodgson JG, James CD, Sarkaria JN, Brennan C, Kahn A, Spellman PT, Wilson RK, Speed TP, Gray JW, Meyerson M, Getz G, Perou CM, Hayes DN. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17(1):98–110.PubMedCrossRefGoogle Scholar
  107. 107.
    Shoshan Y, Nishiyama A, Chang A, Mork S, Barnett GH, Cowell JK, Trapp BD, Staugaitis SM. Expression of oligodendrocyte progenitor cell antigens by gliomas: implications for the histogenesis of brain tumors. Proc Natl Acad Sci USA. 1999;96(18):10361–6.PubMedCrossRefGoogle Scholar
  108. 108.
    Wren D, Wolswijk G, Noble M. In vitro analysis of the origin and maintenance of O-2Aadult progenitor cells. J Cell Biol. 1992;116(1):167–76.PubMedCrossRefGoogle Scholar
  109. 109.
    Kondo T, Raff M. Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science. 2000;289(5485):1754–7.PubMedCrossRefGoogle Scholar
  110. 110.
    Hide T, Takezaki T, Nakatani Y, Nakamura H, Kuratsu J, Kondo T. Combination of a ptgs2 inhibitor and an epidermal growth factor receptor-­signaling inhibitor prevents tumorigenesis of oligodendrocyte lineage-derived glioma-initiating cells. Stem Cells. 2011;29(4):590–9.PubMedCrossRefGoogle Scholar
  111. 111.
    Lindberg N, Kastemar M, Olofsson T, Smits A, Uhrbom L. Oligodendrocyte progenitor cells can act as cell of origin for experimental glioma. Oncogene. 2009;28(23):2266–75.PubMedCrossRefGoogle Scholar
  112. 112.
    Sugiarto S, Persson AI, Munoz EG, Waldhuber M, Lamagna C, Andor N, Hanecker P, Ayers-Ringler J, Phillips J, Siu J, Lim DA, Vandenberg S, Stallcup W, Berger MS, Bergers G, Weiss WA, Petritsch C. Asymmetry-defective oligodendrocyte progenitors are glioma precursors. Cancer Cell. 2011;20(3):328–40.PubMedCrossRefGoogle Scholar
  113. 113.
    Polyak K, Kalluri R. The role of the microenvironment in mammary gland development and cancer. Cold Spring Harb Perspect Biol. 2010;2(11):a003244.PubMedCrossRefGoogle Scholar
  114. 114.
    Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, Oh EY, Gaber MW, Finklestein D, Allen M, Frank A, Bayazitov IT, Zakharenko SS, Gajjar A, Davidoff A, Gilbertson RJ. A perivascular niche for brain tumor stem cells. Cancer Cell. 2007;11(1):69–82.PubMedCrossRefGoogle Scholar
  115. 115.
    Charles N, Ozawa T, Squatrito M, Bleau AM, Brennan CW, Hambardzumyan D, Holland EC. Perivascular nitric oxide activates notch signaling and promotes stem-like character in PDGF-induced glioma cells. Cell Stem Cell. 2010;6(2):141–52.PubMedCrossRefGoogle Scholar
  116. 116.
    Hambardzumyan D, Becher OJ, Rosenblum MK, Pandolfi PP, Manova-Todorova K, Holland EC. PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. Genes Dev. 2008;22(4):436–48.PubMedCrossRefGoogle Scholar
  117. 117.
    Folkins C, Man S, Xu P, Shaked Y, Hicklin DJ, Kerbel RS. Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors. Cancer Res. 2007;67(8):3560–4.PubMedCrossRefGoogle Scholar
  118. 118.
    Markovic DS, Glass R, Synowitz M, Rooijen N, Kettenmann H. Microglia stimulate the invasiveness of glioma cells by increasing the activity of metalloprotease-2. J Neuropathol Exp Neurol. 2005;64(9):754–62.PubMedCrossRefGoogle Scholar
  119. 119.
    Galarneau H, Villeneuve J, Gowing G, Julien JP, Vallieres L. Increased glioma growth in mice depleted of macrophages. Cancer Res. 2007;67(18):8874–81.PubMedCrossRefGoogle Scholar
  120. 120.
    Couldwell WT, Yong VW, Dore-Duffy P, Freedman MS, Antel JP. Production of soluble autocrine inhibitory factors by human glioma cell lines. J Neurol Sci. 1992;110(1–2):178–85.PubMedCrossRefGoogle Scholar
  121. 121.
    Lal PG, Ghirnikar RS, Eng LF. ­Astrocyte-astrocytoma cell line interactions in culture. J Neurosci Res. 1996;44(3):216–22.PubMedCrossRefGoogle Scholar
  122. 122.
    Le DM, Besson A, Fogg DK, Choi KS, Waisman DM, Goodyer CG, Rewcastle B, Yong VW. Exploitation of astrocytes by glioma cells to facilitate invasiveness: a mechanism involving matrix ­metalloproteinase-2 and the urokinase-type plasminogen activator-­plasmin cascade. J Neurosci. 2003;23(10):4034–43.PubMedGoogle Scholar
  123. 123.
    Barbero S, Bajetto A, Bonavia R, Porcile C, Piccioli P, Pirani P, Ravetti JL, Zona G, Spaziante R, Florio T, Schettini G. Expression of the chemokine receptor CXCR4 and its ligand stromal cell-derived factor 1 in human brain tumors and their involvement in glial proliferation in vitro. Ann N Y Acad Sci. 2002;973:60–9.PubMedCrossRefGoogle Scholar
  124. 124.
    Hoelzinger DB, Demuth T, Berens ME. Autocrine factors that sustain glioma invasion and paracrine biology in the brain microenvironment. J Natl Cancer Inst. 2007;99(21):1583–93.PubMedCrossRefGoogle Scholar
  125. 125.
    Kang DC, Su ZZ, Sarkar D, Emdad L, Volsky DJ, Fisher PB. Cloning and characterization of HIV-1-inducible astrocyte elevated gene-1, AEG-1. Gene. 2005;353(1):8–15.PubMedCrossRefGoogle Scholar
  126. 126.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.PubMedCrossRefGoogle Scholar
  127. 127.
    Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani L, Bromberg JE, Hau P, Mirimanoff RO, Cairncross JG, Janzer RC, Stupp R. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352(10):997–1003.PubMedCrossRefGoogle Scholar
  128. 128.
    Assanah MC, Bruce JN, Suzuki SO, Chen A, Goldman JE, Canoll P. PDGF stimulates the massive expansion of glial progenitors in the neonatal forebrain. Glia. 2009;57(16):1835–47.PubMedCrossRefGoogle Scholar
  129. 129.
    Glass R, Synowitz M, Kronenberg G, Walzlein JH, Markovic DS, Wang LP, Gast D, Kiwit J, Kempermann G, Kettenmann H. Glioblastoma-induced attraction of endogenous neural precursor cells is associated with improved survival. J Neurosci. 2005;25(10):2637–46.PubMedCrossRefGoogle Scholar
  130. 130.
    Walzlein JH, Synowitz M, Engels B, Markovic DS, Gabrusiewicz K, Nikolaev E, Yoshikawa K, Kaminska B, Kempermann G, Uckert W, Kaczmarek L, Kettenmann H, Glass R. The antitumorigenic response of neural precursors depends on subventricular proliferation and age. Stem Cells. 2008;26(11):2945–54.PubMedCrossRefGoogle Scholar
  131. 131.
    Chen FX, Ren WW, Yang Y, Shen D, Zong Y, Xu S, Duan Y, Qian Y, Ji Y. Reciprocal effects of conditioned medium on cultured glioma cells and neural stem cells. J Clin Neurosci. 2009;16(12):1619–23.PubMedCrossRefGoogle Scholar
  132. 132.
    Staflin K, Honeth G, Kalliomaki S, Kjellman C, Edvardsen K, Lindvall M. Neural progenitor cell lines inhibit rat tumor growth in vivo. Cancer Res. 2004;64(15):5347–54.PubMedCrossRefGoogle Scholar
  133. 133.
    Suzuki T, Izumoto S, Wada K, Fujimoto Y, Maruno M, Yamasaki M, Kanemura Y, Shimazaki T, Okano H, Yoshimine T. Inhibition of glioma cell proliferation by neural stem cell factor. J Neurooncol. 2005;74(3):233–9.PubMedCrossRefGoogle Scholar
  134. 134.
    Hamburg MA, Collins FS. The path to personalized medicine. N Engl J Med. 2010;363(4):301–4.PubMedCrossRefGoogle Scholar
  135. 135.
    Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U, Goodell MA, Brenner MK. A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA. 2004;101(39):14228–33.PubMedCrossRefGoogle Scholar
  136. 136.
    Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, Tsukamoto AS, Gage FH, Weissman IL. Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci USA. 2000;97(26):14720–5.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Daniela Cesselli
    • 1
    • 2
    • 3
  • Antonio Paolo Beltrami
    • 1
    • 2
    • 3
  • Anja Pucer
    • 1
    • 2
    • 3
  • Evgenia Bourkoula
    • 1
    • 2
    • 3
  • Tamara Ius
    • 4
  • Marco Vindigni
    • 4
  • Miran Skrap
    • 4
  • Carlo Alberto Beltrami
    • 1
    • 2
    • 3
    Email author
  1. 1.Interdepartmental Center for Regenerative MedicineUniversity of UdineUdineItaly
  2. 2.Department of Medical and Biological SciencesUniversity of UdineUdineItaly
  3. 3.Department of PathologyAzienda Ospedaliero Universitaria di UdineUdineItaly
  4. 4.Department of NeurosurgeryAzienda Ospedaliero Universitaria di UdineUdineItaly

Personalised recommendations