Skip to main content

On the Markov Three-State Progressive Model

  • Chapter
  • First Online:
Recent Advances in System Reliability

Part of the book series: Springer Series in Reliability Engineering ((RELIABILITY))

Abstract

In this work we revisit the Markov three-state progressive model. Several characterizations of the Markov condition are discussed, and nonparametric estimators of important targets such as the bivariate distibution of the event times or the transition probabilities are motivated. Three points of special interest are considered: (1) the relative improvements when introducing the Markov condition in the construction of the estimators; (2) bootstrap algorithms to resample under markovianity; and (3) goodness-of-fit testing for the Markov assumption. Simulation studies and some technical derivations are included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aalen O, Johansen S (1978) An empirical transition matrix for nonhomogeneous Markov chains based on censored observations. Scand J Stat 5:141–150

    MathSciNet  MATH  Google Scholar 

  • Aalen O, Borgan O, Fekjaer H (2001) Covariate adjustment of event histories estimated from Markov chains: the additive approach. Biometrics 57(4):993–1001

    Article  MathSciNet  MATH  Google Scholar 

  • Andersen PK, Keiding N (2002) Multi-state models for event history analysis. Stat Methods Med Res 11(2):911–915

    Google Scholar 

  • Bertail P, Clémençon S (2006) Regenerative block bootstrap for Markov chains. Bernoulli 12(4):689–712

    Article  MathSciNet  MATH  Google Scholar 

  • Chang IS, Chuang YC, Hsiung CA (2001) Goodness-of-fit tests for semi-Markov and Markov survival models with one intermediate state. Scand J Stat 28(3):505–525

    Article  MathSciNet  MATH  Google Scholar 

  • Cook RJ, Lawless JF (2007) The statistical analysis of recurrent events. Springer, New York

    MATH  Google Scholar 

  • Datta S, Ferguson AN (2011) Nonparametric estimation of marginal temporal functionals in a multistate model. In: Lisnianski A, Frenkel I (eds) Recent advances in system reliability: signatures, multi-state systems and statistical inference. Springer, London (to appear)

    Google Scholar 

  • Datta S, McCormick W (1993) Regeneration-based bootstrap for Markov chains. Canad J Statist 21(2):181–193

    Article  MathSciNet  MATH  Google Scholar 

  • Datta S, McCormick WP (1995) Some continuous edgeworth expansions for Markov chains with applications to bootstrap. J Multivar Anal 52(1):83–106

    Article  MathSciNet  MATH  Google Scholar 

  • Datta S, Satten GA (2001) Validity of the Aalen–Johansen estimators of stage occupation probabilities and Nelson Aalen integrated transition hazards for non-Markov models. Stat Probab Lett 55(4):403–411

    Article  MathSciNet  MATH  Google Scholar 

  • Datta S, Satten GA, Datta S (2000) Nonparametric estimation for the three-stage irreversible illness-death model. Biometrics 56(3):841–847

    Article  MATH  Google Scholar 

  • de Uña-Álvarez J, Amorim AP (2011) A semiparametric estimator of the bivariate distribution function for censored gap times. Biometrical J 53(1):113–127

    Article  MATH  Google Scholar 

  • de Uña-Álvarez J, Meira-Machado L (2008) A simple estimator of the bivariate distribution function for censored gap times. Stat Probab Lett 78(15):2440–2445

    Article  MATH  Google Scholar 

  • Emura T, Wang W (2010) Testing quasi-independence for truncation data. J Multivar Anal 101(1):223–239

    Article  MathSciNet  MATH  Google Scholar 

  • Fuh CD, Ip EH (2005) Bootstrap and Bayesian bootstrap clones for censored Markov chains. J Stat Plan Inf 128(1):459–474

    Article  MathSciNet  MATH  Google Scholar 

  • Hougaard P (2000) Analysis of multivariate survival data. Springer, New York

    Book  MATH  Google Scholar 

  • Jones MP, Crowley J (1992) Nonparametric tests of the Markov model for survival data. Biometrika 79(3):513–522

    Article  MathSciNet  MATH  Google Scholar 

  • Meira-Machado L, de Uña-Álvarez J, Cadarso-Suárez C (2006) Nonparametric estimation of transition probabilities in a non-Markov illness-death model. Lifetime Data Anal 12(3):325–344

    Article  MathSciNet  Google Scholar 

  • Meira-Machado L, de Uña-Álvarez J, Cadarso-Suárez C, Andersen PK (2009) Multistate models for the analysis of time-to-event data. Stat Methods Med Res 18:195–222

    Article  MathSciNet  Google Scholar 

  • Rodríguez-Girondo M, de Uña-Álvarez J (2010) Testing markovianity in the three-state progressive model via future-past association. Report 10/01. Discussion papers in statistics and OR, University of Vigo

    Google Scholar 

  • Tsai WY (1990) Testing the assumption of independence of truncation time and failure time. Biometrika 77(1):169–177

    Article  MathSciNet  MATH  Google Scholar 

  • Woodroofe M (1985) Estimating a distribution function with truncated data. Ann Stat 13(1):163–177

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the Grants MTM2008-03129 of the Spanish Ministerio de Ciencia e Innovación and 10PXIB300068PR of the Xunta de Galicia. Financial support from the INBIOMED project (DXPCTSUG, Ref. 2009/063) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacobo de Uña-Álvarez .

Editor information

Editors and Affiliations

Appendix

Appendix

In this Appendix we give the technical derivations of three results that have been referred in Sect. 19.2 and Sect. 19.3.

Lemma 1

Assume that \( \left( {Z,T} \right) \) is Markov. Then, we have for each t.

$$ \Uppsi (t) = \int\limits_{0}^{t} {\frac{{F_{T} ({\text{d}}y)}}{M(y)}} . $$

Proof

From the bivariate df of \( \left( {Z,T} \right) \) we get that the marginal df of T satisfies

$$ F_{T} (t) = F_{Z,T} (t,t) = F_{Z} (t) - \overline{S} (t)\int\limits_{0}^{t} {\frac{{F_{Z} ({\text{d}}y)}}{{\overline{S} (y)}}} . $$

Since \( \overline{S}^{'} (t) = - \psi (t)\overline{S} (t) \) we have

$$ F_{T} ({\text{d}}t) = \psi (t)\overline{S} (t)\int\limits_{0}^{t} {\frac{{F_{Z} ({\text{d}}y)}}{{\overline{S} (y)}}{\text{d}}t} . $$

We also have

$$ \begin{aligned} M(y) =& \iint\limits_{{\left\{ {u < y \le v} \right\}}} {F_{Z,T} ({\text{d}}u,{\text{d}}v)} = \iint\limits_{{\left\{ {u < y \le v} \right\}}} {\psi (v)\frac{{\overline{S} (v)}}{{\overline{S} (u)}}F_{Z} ({\text{d}}u){\text{d}}v} \\ =& \int\limits_{y}^{\infty } {\psi (v)\overline{S} (v){\text{d}}v} \int\limits_{0}^{y} {\frac{{F_{Z} ({\text{d}}u)}}{{\overline{S} (u)}}} . \hfill \\ \end{aligned} $$

Hence,

$$ \int\limits_{0}^{t} {\frac{{F_{T} (\hbox{d}y)}}{M(y)}} = \int\limits_{0}^{t} {\frac{{\psi (y)\overline{S} (y)\hbox{d}y}}{{\int_{y}^{\infty } \psi (v)\overline{S} (v)\hbox{d}v}}} = - \log \overline{S} (t), $$

where for the last equality we have used \( \overline{S} (t) = \int_{t}^{\infty } {\psi \overline{S} } . \) Since \( \Uppsi (t) = - \log \overline{S} (t), \) this completes the proof.

Lemma 2

Assume that \( \left( {Z,T} \right) \) is Markov. Then, for each \( z < t \) we have \( A(t,z) = A(t,0) - A(z,0). \) Conversely, if \( \left( {Z,T} \right) \) is not Markov, there exists a pair \( \left( {t,z} \right) \) for which \( A(t,z) \ne A(t,0) - A(z,0). \)

Proof

Write

$$ \begin{aligned} A(t,z) &= \iint\limits_{{\left\{ {z < x < y \le t} \right\}}} {\frac{{F_{Z,T} ({\text{d}}x,{\text{d}}y)}}{{M_{z} (y)}}} = \iint\limits_{{\left\{ {z < x < y \le t} \right\}}} {\frac{\psi (y)}{{M_{z} (y)}} \frac{{\overline{S} (y)}}{{\overline{S} (x)}}F_{Z} ({\text{d}}x){\text{d}}y} \\ &= \int\limits_{z}^{t} \frac{{\psi (y)\overline{S} (y)}}{{M_{z} (y)}}\left[ {\int\limits_{z}^{y} \frac{{F_{Z} ({\text{d}}x)}}{{\overline{S} (x)}}} \right]{\text{d}}y. \hfill \\ \end{aligned} $$

Now,

$$ \begin{aligned} M_{z} (y) &= \iint\limits_{{\left\{ {z < u < y \le v} \right\}}} F_{Z,T} ({\text{d}}u,{\text{d}}v) = \iint\limits_{{\left\{ {z < u < y \le v} \right\}}} \psi (v)\frac{{\overline{S} (v)}} {{\overline{S} (u)}}F_{Z} ({\text{d}}u){\text{d}}v \\ \, &= \int\limits_{y}^{\infty } \psi (v)\overline{S} (v){\text{d}}v\int\limits_{z}^{y} \frac{{F_{Z} ({\text{d}}u)}}{{\overline{S} (u)}}. \hfill \\ \end{aligned} $$

Summarizing, we have

$$ A(t,z) = \int\limits_{z}^{t} {\frac{{\psi (y)\overline{S} (y)}}{{\int_{y}^{\infty } \psi (v)\overline{S} (v){\text{d}}v}}{\text{d}}y} . $$

From this, equation \( A(t,z) = A(t,0) - A(z,0) \) is immediately satisfied. The second assertion can be checked by tracing the above steps back.

Lemma 3

\( H_{0}^{Q} \) holds if and only if \( (U,V) \) conditionally on \( U \le V \) is Markov.

Proof

Assume that \( (U,V)|U \le V \) is Markov. Then, the conditional df of \( (U,V) \) given \( U \le V, \) say \( F_{U,V|U \le V} , \) satisfies for \( u \le v \)

$$ F_{U,V|U \le V} (u,v) = \int\limits_{0}^{u} {\left( {1 - \frac{{\overline{S} (v)}}{{\overline{S} (x)}}} \right)F_{U|U \le V} ({\text{d}}x)} , $$

where \( \overline{S} (t) = \exp \left[ { - \int_{0}^{t} \psi } \right] \) stands for the survival function of \( V|U = 0,U \le V, \) and \( U|U \le V \sim F_{U|U \le V} . \) Then,

$$ \begin{aligned} P(U \le u,V > v|U \le V) =& \iint\limits_{{\left\{ {x \le u,y > v} \right\}}} F_{U,V|U \le V} ({\text{d}}x , {\text{d}}y) \\ \, =& \iint\limits_{{\left\{ {x \le u,y > v} \right\}}} \psi (y)\frac{{\overline{S} (y)}}{{\overline{S} (x)}}F_{U|U \le V} ({\text{d}}x ) {\text{d}}y \\ \, =& \int\limits_{0}^{u} \frac{{F_{U|U \le V} (\hbox{d}x)}}{{\overline{S} (x)}}\int\limits_{v}^{\infty } \psi (y)\overline{S} (y){\text{d}}y, \hfill \\ \end{aligned} $$

and hence \( H_{0}^{Q} \) is satisfied. The complementary assertion is proved by tracing the above steps back.

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

de Uña-Álvarez, J. (2012). On the Markov Three-State Progressive Model. In: Lisnianski, A., Frenkel, I. (eds) Recent Advances in System Reliability. Springer Series in Reliability Engineering. Springer, London. https://doi.org/10.1007/978-1-4471-2207-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2207-4_19

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2206-7

  • Online ISBN: 978-1-4471-2207-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics