Skip to main content

Overture: Ramsey’s Theorem

  • Chapter
Combinatorial Set Theory

Part of the book series: Springer Monographs in Mathematics ((SMM))

  • 2741 Accesses

Abstract

In this chapter, the following theorem—which can be considered as the nucleus of Ramsey Theory—will be discussed in great detail.

Theorem 2.1 (Ramsey’s Theorem). For any number nω, for any positive number rω, for any S∈[ω]ω, and for any colouring π: [S]nr, there is always an H∈[S]ω such that H is homogeneous for π, i.e., the set [H]n is monochromatic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spiros A. Argyros, Stevo Todorčević: Ramsey Methods in Analysis, Advanced Courses in Mathematics—CRM Barcelona. Birkhäuser, Basel (2005)

    MATH  Google Scholar 

  2. Taras O. Banakh, Igor V. Protasov: Symmetry and colorings: some results and open problems. Izdatel’stvo Gomel’skogo Universiteta. Voprosy Algebry 17, 5–16 (2001)

    Google Scholar 

  3. Taras O. Banakh, Oleg V. Verbitski, Yaroslav B. Vorobets: A Ramsey treatment of symmetry. Electron. J. Comb. 7, #R52 (2000), 25 pp.

    Google Scholar 

  4. Jörg Brendle, Lorenz Halbeisen, Benedikt Löwe: Silver measurability and its relation to other regularity properties. Math. Proc. Camb. Philos. Soc. 138, 135–149 (2005)

    Article  MATH  Google Scholar 

  5. Antoine Brunel, Louis Sucheston: B-convex Banach spaces. Math. Syst. Theory 7, 294–299 (1973)

    Article  MathSciNet  Google Scholar 

  6. Dennis Devlin: Some partition theorems and ultrafilters on ω. PhD thesis, Dartmouth College, Hanover, USA (1979)

    Google Scholar 

  7. Paul Erdős: Problems and results in chromatic number theory. In: Proof Techniques in Graph Theory, F. Harary (ed.), pp. 47–55. Academic Press, New York (1969)

    Google Scholar 

  8. Paul Erdős, Richard Rado: A combinatorial theorem. J. Lond. Math. Soc. 25, 249–255 (1950)

    Article  Google Scholar 

  9. Paul Erdős, George Szekerés: A combinatorial problem in geometry. Compos. Math. 2, 463–470 (1935)

    Google Scholar 

  10. Paul Erdős, András Hajnal: Research problem 2–5. J. Comb. Theory 2, 105 (1967)

    Google Scholar 

  11. W. Timothy Gowers: A new dichotomy for Banach spaces. Geom. Funct. Anal. 6, 1083–1093 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. W. Timothy Gowers: An infinite Ramsey theorem and some Banach-space dichotomies. Ann. Math. ( 2 ) 156, 797–833 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. W. Timothy Gowers: Ramsey methods in Banach spaces. In: Handbook of the Geometry of Banach Spaces, vol. 2, William B. Johnson, Joram Lindenstrauss (eds.), pp. 1071–1097. North-Holland, Amsterdam (2003)

    Chapter  Google Scholar 

  14. Ronald L. Graham: On edgewise 2-colored graphs with monochromatic triangles and containing no complete hexagon. J. Comb. Theory 4, 300 (1968)

    Article  MATH  Google Scholar 

  15. Ronald L. Graham: Some of my favorite problems in Ramsey theory. In: Combinatorial Number Theory, Bruce Landman, Melvyn B. Nathanson, Jaroslav Nešetřil, Richard J. Nowakowski, Carl Pomerance (eds.), Proceedings of the ‘Integers Conference 2005’ in Celebration of the 70th Birthday of Ronald Graham, Carrollton, Georgia, USA, October 27–30, 2005, pp. 229–236. De Gruyter, Berlin (2007)

    Google Scholar 

  16. Ronald L. Graham, Bruce L. Rothschild, Joel H. Spencer: Ramsey Theory, 2nd edn. Wiley, New York (1980)

    MATH  Google Scholar 

  17. Lorenz Halbeisen. Fans and bundles in the graph of pairwise sums and products. Electron. J. Comb. 11(1), #R6 (2004), 11 pp.

    MathSciNet  Google Scholar 

  18. Lorenz Halbeisen: Making doughnuts of Cohen reals. Math. Log. Q. 49, 173–178 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lorenz Halbeisen, Norbert Hungerbühler: On generalized Carmichael numbers. Hardy–Ramanujan J. 22, 8–22 (1999)

    MathSciNet  MATH  Google Scholar 

  20. Lorenz Halbeisen, Edward W. Odell: On asymptotic models in Banach spaces. Isr. J. Math. 139, 253–291 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Neil Hindman: Finite sums from sequences within cells of a partition of N. J. Comb. Theory, Ser. A 17, 1–11 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  22. Neil Hindman, Dona Strauss: Algebra in the Stone–Čech Compactification: Theory and Applications. De Gruyter Expositions in Mathematics. De Gruyter, New York (1998)

    Book  MATH  Google Scholar 

  23. Thomas Jech: The Axiom of Choice. Studies in Logic and the Foundations of Mathematics, vol. 75. North-Holland, Amsterdam (1973)

    MATH  Google Scholar 

  24. Péter Komjáth: A coloring result for the plane. J. Appl. Anal. 5, 113–117 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mordechai Lewin: A new proof of a theorem of Erdős and Szekerés. Math. Gaz. 60, 136–138 (1976) (correction ibid., p. 298)

    Article  MathSciNet  MATH  Google Scholar 

  26. Keith R. Milliken: Ramsey’s theorem with sums or unions. J. Comb. Theory, Ser. A 18, 276–290 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  27. Walter D. Morris, Valeriu Soltan: The Erdős–Szekeres problem on points in convex position—a survey. Bull. Am. Math. Soc. 37, 437–458 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Edward W. Odell: Applications of Ramsey theorems to Banach space theory. In: Notes in Banach Spaces, H.E. Lacey (ed.), pp. 379–404. University Press, Austin (1980)

    Google Scholar 

  29. Edward W. Odell: On subspaces, asymptotic structure, and distortion of Banach spaces connections with logic. In: Analysis and Logic, Catherine Finet, Christian Michaux (eds.). London Mathematical Society Lecture Note Series, vol. 262, pp. 189–267. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  30. Jeff B. Paris: Combinatorial statements independent of arithmetic. In: Mathematics of Ramsey Theory, J. Nešetřil, V. Rödl (eds.), pp. 232–245. Springer, Berlin (1990)

    Chapter  Google Scholar 

  31. Jeff B. Paris, Leo Harrington: A mathematical incompleteness in Peano arithmetic. In: Handbook of Mathematical Logic, J. Barwise (ed.), pp. 1133–1142. North-Holland, Amsterdam (1977)

    Chapter  Google Scholar 

  32. Richard Rado: Direct decomposition of partitions. J. Lond. Math. Soc. 29, 71–83 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  33. Stanisław P. Radziszowski: Small Ramsey numbers. Electron. J. Comb., Dynamic Surveys 1 (August 1, 2006), 60 pp.

    Google Scholar 

  34. Frank P. Ramsey: On a problem of formal logic. Proc. Lond. Math. Soc. Ser. II 30, 264–286 (1930)

    Article  Google Scholar 

  35. Frank P. Ramsey: The Foundations of Mathematics and Other Logical Essays, edited by R.B. Braithwaite, with a preface by G.E. Moore. Kegan Paul, Trench, Trubner & Co., London (1931)

    Google Scholar 

  36. Issai Schur: Über die Kongruenz x m+y m=z m (mod p). Jahresber. Dtsch. Math. - Ver. 25, 114–117 (1916)

    MATH  Google Scholar 

  37. Neil J. A. Sloane: The On-Line Encyclopedia of Integer Sequences, available online at: http://www.research.att.com/~njas/sequences/

  38. Alexander Soifer: Issai Schur: Ramsey theory before Ramsey. Geombinatorics 5, 6–23 (1995)

    MathSciNet  MATH  Google Scholar 

  39. Alan D. Taylor: A canonical partition relation for finite subsets of ω. J. Comb. Theory, Ser. A 21, 137–146 (1976)

    Article  MATH  Google Scholar 

  40. Stevo Todorčević: Introduction to Ramsey Spaces. Annals of Mathematics Studies, vol. 174. Princeton University Press, Princeton (2010)

    Google Scholar 

  41. Vojkan Vuksanović: A proof of a partition theorem for \([\mathbb{Q}]^n\). Proc. Am. Math. Soc. 130, 2857–2864 (2002)

    Article  MATH  Google Scholar 

  42. Arthur Wieferich: Zum letzten Fermatschen Theorem. J. Reine Angew. Math. 136, 293–302 (1909)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenz J. Halbeisen .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Halbeisen, L.J. (2012). Overture: Ramsey’s Theorem. In: Combinatorial Set Theory. Springer Monographs in Mathematics. Springer, London. https://doi.org/10.1007/978-1-4471-2173-2_2

Download citation

Publish with us

Policies and ethics