Advertisement

Martin’s Axiom

Part of the Springer Monographs in Mathematics book series (SMM)

Abstract

In this chapter, we shall introduce a set-theoretic axiom, known as Martin’s Axiom, which is independent of ZFC. In the presence of the Continuum Hypothesis, Martin’s Axiom becomes trivial, but if the Continuum Hypothesis fails, then Martin’s Axiom becomes an interesting combinatorial statement as well as an important tool in Combinatorics. Furthermore, Martin’s Axiom provides a good introduction to the forcing technique which will be introduced in the next chapter.

References

  1. 1.
    Murray G. Bell: On the combinatorial principle \(P(\mathfrak {c})\). Fundam. Math. 114, 149–157 (1981) MATHGoogle Scholar
  2. 2.
    Andreas Blass: Combinatorial cardinal characteristics of the continuum. In: Handbook of Set Theory, vol. 1, Matthew Foreman, Akihiro Kanamori (eds.), pp. 395–490. Springer, Berlin (2010) CrossRefGoogle Scholar
  3. 3.
    R. Michael Canjar: On the generic existence of special ultrafilters. Proc. Am. Math. Soc. 110, 233–241 (1990) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    David H. Fremlin: Consequences of Martin’s Axiom. Cambridge Tracts in Mathematics, vol. 84. Cambridge University Press, Cambridge (1984) MATHCrossRefGoogle Scholar
  5. 5.
    David H. Fremlin, Saharon Shelah: On partitions of the real line. Isr. J. Math. 32, 299–304 (1979) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Thomas Jech: Set Theory, The Third Millennium Edition, Revised and Expanded. Springer Monographs in Mathematics. Springer, Berlin (2003) MATHGoogle Scholar
  7. 7.
    Kenneth Kunen: Set Theory, an Introduction to Independence Proofs. Studies in Logic and the Foundations of Mathematics, vol. 102. North-Holland, Amsterdam (1983) MATHGoogle Scholar
  8. 8.
    Donald A. Martin, Robert M. Solovay: Internal Cohen extensions. Ann. Math. Log. 2, 143–178 (1970) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Arnold W. Miller: The Baire category theorem and cardinals of countable cofinality. J. Symb. Log. 47, 275–288 (1982) MATHCrossRefGoogle Scholar
  10. 10.
    Mary Ellen Rudin: Martin’s axiom. In: Handbook of Mathematical Logic, J. Barwise (ed.), pp. 491–501. North-Holland, Amsterdam (1977) CrossRefGoogle Scholar
  11. 11.
    Nikolai A. Shanin: A theorem from the general theory of sets. C. R. ( Dokl. ) Acad. Sci. URSS ( N.S. ) 53, 399–400 (1946) MathSciNetMATHGoogle Scholar
  12. 12.
    William Weiss: Versions of Martin’s axiom. In: Handbook of Set - Theoretic Topology, K. Kunen, J.E. Vaughan (eds.), pp. 827–886. North-Holland, Amsterdam (1990) Google Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.Institut für MathematikUniversität ZürichZürichSwitzerland

Personalised recommendations