Multirange Nonlinear Controller Design

  • Amir Nassirharand


In cases that a dual-range linear controller is proved to be inadequate to achieve the objectives of control, one may consider the design of a multirange nonlinear controller. An algorithm for design of multi-range nonlinear controllers for both single-variable and multivariable nonlinear systems is presented. Without loss of generality, nonlinear PID, lead-lag, and \( {H_\infty } \) controllers are considered. Example problems are given to demonstrate the typical results that may be achieved.


Nonlinear Function Controller Parameter Controller Gain Nonlinear Controller Linear Controller 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Atherton, D.P.: Comment on describing function inversion. Electron Lett 6, 779–780 (1970)CrossRefGoogle Scholar
  2. Besancon-Voda, A., Blaha, P.: Describing function approximation of a two-relay system configuration to Coulomb friction identification. Control Eng Pract 10, 655–668 (2002)CrossRefGoogle Scholar
  3. Bongard, J.C., Lipson, H.: Nonlinear system identification using coevolution of models and tests. IEEE Trans Evol Comput 9, 361–384 (2005)CrossRefGoogle Scholar
  4. Colgren, R.D.: Applications of robust control to nonlinear systems. American Institute of Aeronautics and Astronautics, Reston (2004)CrossRefGoogle Scholar
  5. Dhupia, J.S., Ulsoy, A.G., Katz, R., et al.: Experimental identification of the nonlinear parameters of an industrial translational guide for machine performance evaluation. J Vib Control 14, 645–668 (2008)CrossRefGoogle Scholar
  6. Ge, H.W., Qian, F., et al.: Identification and control of nonlinear systems by a dissimilation particle swarm optimization-based Elman neural-network. Nonlin Anal: Real World Appl 9, 1345–1360 (2008)MathSciNetMATHCrossRefGoogle Scholar
  7. Gelb, A., Vander Velde, W.E.: Multiple-input describing functions and nonlinear system design. McGraw-Hill, New York (1968)MATHGoogle Scholar
  8. Haber, R., Keviczky, L.: Nonlinear system identification-input-output modeling approach. Kluwer Acaemic Publishers, Dordrecht (1999)MATHCrossRefGoogle Scholar
  9. John, J.: Nonlinear continuous system identification by means of multiple integration II. Acta Polytechnica 41, 64–67 (2001)Google Scholar
  10. Kerschen, G., Worden, K., Vakakis, A.F., et al.: Past, present and future of nonlinear system identification in structural dynamics. Mechan Syst Signal Process 20, 505–592 (2006)CrossRefGoogle Scholar
  11. Kim, M.S., Chung, S.C.: Friction identification of ball-screw driven servomechanisms through the limit cycle analysis. Mechatronics 16, 131–140 (2006)CrossRefGoogle Scholar
  12. Li, L., Yang, Y., Peng, H.: Fuzzy system identification via chaotic ant swarm. Chaos Solitons Fractiles 41, 401–409 (2010)MATHCrossRefGoogle Scholar
  13. Lyashevskiy, S., Chen, Y.: Identification of nonlinear system parameters using describing function approach. Proc Am Control Conf 3, 1944–1945 (1997)Google Scholar
  14. Nanka-Bruce, O., Atherton, D.P.: Design of nonlinear controllers for nonlinear plants. Proc IFAC Congr Tallinn 6, 75–80 (1990)Google Scholar
  15. Nassirharand, A.: Identification of frequency domain models for nonlinear systems. Adv Eng Softw 10, 195–201 (1988)MATHCrossRefGoogle Scholar
  16. Nassirharand, A.: A new software tool for design of linear compensators. Adv Eng Softw 39, 132–136 (2008a)CrossRefGoogle Scholar
  17. Nassirharand, A.: Controller synthesis procedure for linear unstable plants. Int J Automat Control 2, 137–149 (2008b)CrossRefGoogle Scholar
  18. Nassirharand, A.: Control system design of multivariable non-linear space robots. Aircr Eng Aerosp Technol 80, 27–34 (2008c)CrossRefGoogle Scholar
  19. Nassirharand, A.: Matlab software for inversion of describing functions. Adv Eng Softw 40, 600–606 (2009a)MATHCrossRefGoogle Scholar
  20. Nassirharand, A.: Computer-aided design of classical linear compensators with application to aerospace. J Syst Eng Electron 20, 1373–1377 (2009b)Google Scholar
  21. Nassirharand, A., Karimi, H.: Input/output characterization of highly nonlinear multivariable systems. Adv Eng Softw 33, 825–830 (2002)CrossRefGoogle Scholar
  22. Nassirharand, A., Karimi, H.: Closed-form solution for design of lead-lag compensators. Int J Elect Eng Educ 41, 172–180 (2004c)Google Scholar
  23. Nassirharand, A., Karimi, H.: Nonlinear controller synthesis based on inverse describing function technique in the MATLAB environment. Adv Eng Softw 37, 370–374 (2006)CrossRefGoogle Scholar
  24. Nassirharand, A., Mousavi Firdeh, S.R.: Design of nonlinear lead and/or lag compensators. Int J Control Automat Syst 6, 394–400 (2008)Google Scholar
  25. Nassirharand, A., Mousavi Firdeh, S.R.: Single-range controller design for a cruise missile. Aircr Eng Aerosp Technol: An Int J 81, 283–287 (2009b)CrossRefGoogle Scholar
  26. Nassirharand, A., Mousavi Firdeh, S.R.: Design of nonlinear H controllers using describing functions with application to servomechanism. Asian J Control 11, 446–450 (2009c)CrossRefGoogle Scholar
  27. Nassirharand, A., Karimi, H., Dadfarnia, M.: A new software tool for synthesis of linear PID controllers. Adv Eng Softw 34, 551–557 (2003)CrossRefGoogle Scholar
  28. Nelder, J.A., Mead, R.: A simplex method for function minimization. J Comput 7, 308–313 (1965)MATHCrossRefGoogle Scholar
  29. Ozer, M.B., Ozguven, H.N., Royston, T.J.: Identification of structural non-linearities using describing functions and the Sherman-Morrison method. Mech Syst Signal Process 23, 30–34 (2009)CrossRefGoogle Scholar
  30. Petrovic I, Baotic M, Perik N (2000) Model structure selection for nonlinear system identification using feedforward neural networks. In: Proceedings of IEEE-INNS-ENNS international joint conference on neural networks, Como, 1:1053Google Scholar
  31. Reklaitis, G.V., Ravindran, A., Ragsdell, K.M.: Engineering optimization. Wiley, New York (1983)Google Scholar
  32. Shi, J., Sun, H.H.: Nonlinear system identification for cascaded block model: an application to electrode polarization impedance. IEEE Trans Biomed Eng 37, 574–587 (1990)CrossRefGoogle Scholar
  33. Teh SH (2010) Design of multivariable dual-range linear controllers for nonlinear systems. BEng Thesis, Faculty of Engineering, The University of Nottingham, Semenyih, SelangorGoogle Scholar
  34. Suzuki A, Hedrick JK (1985) Nonlinear controller design by an inverse random-input describing function methods. In: Proceedings of American control conference, Boston, MA, pp 1236–1241Google Scholar
  35. Taylor JH (1983) A systematic nonlinear controller design approach based on quasilinear system models. In: Proceedings of American control conference, San Francisco, CA, pp 141–145Google Scholar
  36. Taylor JH, Strobel KL (1985) Nonlinear control system design based on quasilinear system models. In: Proceedings of American control conference, Boston, MA, pp 1242–1247Google Scholar
  37. Vaerenbergh, S.V., Via, J., Santamaria, I.: Nonlinear system identification using a new sliding-window kernel RLS algorithm. J Commun 2, 1–8 (2007)Google Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  • Amir Nassirharand
    • 1
  1. 1.Faculty of EngineeringThe University of NottinghamSemenyihMalaysia

Personalised recommendations