Graph Isomorphism Models for Non Interleaving Process Algebra

  • J. C. M. Baeten
  • J. A. Bergstra
Conference paper
Part of the Workshops in Computing book series (WORKSHOPS COMP.)


We present a simple and intuitive model for the syntax of ACP based on graph isomorphism. We prove an expressivity result, and use the model to determine the number of states of a process.


Internal Node Transition Relation Parallel Composition Atomic Action Reachable State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.C.M. Baeten & J.A. Bergstra. Global renaming operators in concrete process algebra. Inf. & Comp. 1988; 78:205–245.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    J.C.M. Baeten & J.A. Bergstra. Process algebra with signals and conditions. In: M. Broy (ed.), Programming and mathematical method, Proc. Summer School, Marktoberdorf 1990, Springer Verlag 1992, pp. 273–323 (NATO ASI Series F 88).Google Scholar
  3. 3.
    J.C.M. Baeten & J.A. Bergstra. Non interleaving process algebra. In: E. Best (ed.), Proc. CONCUR’93, Hildesheim, Springer Verlag 1993, pp. 308–323 (Lecture Notes in Computer Science 715).Google Scholar
  4. 4.
    J.C.M. Baeten & W.P. Weijland. Process algebra. Cambridge Tracts in Theoretical Computer Science 18, Cambridge University Press 1990.Google Scholar
  5. 5.
    J.A. Bergstra, I. Bethke & A. Ponse. Process algebra with combinators. Technical Report P9319, Programming Research Group, University of Amsterdam 1993.Google Scholar
  6. 6.
    J.A. Bergstra, I. Bethke & A. Ponse. Process algebra with iteration and nesting. The Computer Journal 1994; 37 (to appear).Google Scholar
  7. 7.
    J.A. Bergstra & J.W. Klop. Process algebra for synchronous communication. Inf. & Control 1984; 60:109–137.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    J.A. Bergstra & J.W. Klop. Algebra of communicating processes with abstraction. Theor. Comp. Sci. 1985; 37:77–121.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    W.J. Fokkink & H. Zantema. Basic process algebra with iteration: completeness of its equational axioms. The Computer Journal 1994; 37 (to appear).Google Scholar
  10. 10.
    J. Parrow. Fairness properties in process algebra - with applications in communication protocol verification. Ph.D. Thesis, DoCS 85/03, Dept. of Computer Systems, Uppsala University 1985.Google Scholar

Copyright information

© British Computer Society 1995

Authors and Affiliations

  • J. C. M. Baeten
    • 1
  • J. A. Bergstra
    • 2
    • 3
  1. 1.Department of Computer ScienceEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Programming Research GroupUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.Department of PhilosophyUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations