Skip to main content

Abstract

Phase transformations take place in familiar ways such as solidification, melting, vaporisation and condensation etc. A direct transformation from solid to vapour phase is called sublimation. From a thermodynamics point of view, when a system consists of more than one phase, each phase may be considered as a seperate system within the whole. The thermodynamic parameters of the whole system may then be constructed from those of the component phases. However, assuming thermodynamic equilibrium and restricting the interaction between the phases at the interface, solely to the flow of heat, no new complications arise and the two phase system can essentially be treated as a single system with anisotropic properties. This assumption has been used in this chapter to develop the algorithms for the numerical simulation of phase transformation processes. Furthermore, the processes considered here have been restricted to melting and solidification, involving only the solid and liquid phases of materials. The assumptions made above cease to remain valid, when the vapour phase is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. DelGuidice, G. Comini, and R.W. Lewis. Finite element simulation of freezing processes in soils. International Journal of Numerical and Analytical Methods in Geomechanics, 2: 223–235, 1978.

    Article  ADS  Google Scholar 

  2. P.E. Frivik, E. Thorbergsen, S. DelGuidice, and G. Comini. Thermal design of pavement structures in seasonal frost areas. Journal of Heat Transfer, 99: 533–540, 1977.

    Article  Google Scholar 

  3. H.C.Huang and R.W.Lewis. Adaptive analysis for heat flow problems using error estimation techniques. In Sixth International Conference for Numerical Methods in Thermal Problems, Swansea, U.K., July 1989. Pineridge Press, Swansea.

    Google Scholar 

  4. J.Crank. Free and Moving Boundary Problems. Clarendon Press, Oxford, 1984.

    Google Scholar 

  5. M.T.Samonds. Finite Element Simulation of Solidification in Sand Mould and Gravity Die Castings - Ph.D. Thesis. University of Wales, Swansea, 1985.

    Google Scholar 

  6. R. J. Sarjant and M. R. Slack. Internal temperature distribution in the cooling and reheating of steel ingots. Journal of Iron and Steel Institute, 177: 428–444, 1954.

    Google Scholar 

  7. J.G. Henzel and J. Keverian. Predicting casting solidification patterns with a computer. Foundry, pages 50–53, 1964.

    Google Scholar 

  8. J.G. Henzel and J. Keverian. Predicting casting solidification patterns in a steel valve casting by means of a digital computer. Metals Eng. Quarterly, pages 39–44, 1965.

    Google Scholar 

  9. J.G. Henzel and J. Keverian. Comparison of calculated and measured solidification patterns in a variety of steel castings. AFS Cast Metals Research Journal, pages 19–36, 1965.

    Google Scholar 

  10. R. Weatherwax and O.K. Riegger. Computer-aided solidification study of a die cast aluminium piston. AFS Transactions, 85: 317–322, 1977.

    Google Scholar 

  11. P.N. Hansen. Numerical simulation of the solidification process. In Solidification and Casting of Metals, Sheffield, U. K., 1979. The Metals Society. Proceedings of the Conference.

    Google Scholar 

  12. J.I. Soliman and E.A. Fakhroo. Finite element solution of heat transmission in steel ingots. Journal of Mechanical Eng. Science, 14: 19 24, 1972.

    Google Scholar 

  13. K. Morgan, R.W. Lewis, and K.N.Seetharamu. Modelling of heat flow and thermal stress in ingot casting. Simulation, pages 55–63, 1981.

    Google Scholar 

  14. R.W. Lewis, K.N. Seetharamu, and K.Morgan. Application of the finite element method in the study of ingot castings. In Solidification Technology in the Foundry and Cast House, pages 40–43, Coventry, U.K., September 1983. The Metals Society. Proceedings of the Conference.

    Google Scholar 

  15. A.J. Dalhuijsen and A. Segal. Comparison of finite element techniques for solidification problems. International Journal for Numerical Methods in Engineering, 23: 1807–1829, 1986.

    Article  MATH  Google Scholar 

  16. M. Salcudean and Z. Abdullah. On the numerical modelling of heat transfer during solidification processes. International Journal for Numerical Methods in Engineering, 25: 445–473, 1988.

    Article  MATH  Google Scholar 

  17. V.R. Voller, C.R. Swaminathan, and B.G. Thomas. Fixed grid techniques for phase change problems: A review. International Journal for Numerical Methods in Engineering, 30:875–898, 1990. Special thermal issue.

    Google Scholar 

  18. J. Crank, How to deal with moving boundaries in thermal problems. In R.W. Lewis, K. Morgan, and O.C. Zienkiewicz, editors, Numerical Methods in Heat Trafsfer. Wiley, Chichester, 1981.

    Google Scholar 

  19. K. O’Neill and D.R. Lynch. A finite element solution of freezing problems using a continuously deforming coordinate system. In R.W. Lewis, K. Morgan, and O.C. Zienkiewicz, editors, Numerical Methods in Heat Trafsfer. Wiley, Chichester, 1981.

    Google Scholar 

  20. J. Yoo and B. Rubinsky. Numerical computation using finite elements for the moving interface in heat transfer problems with phase transformation. Numerical Heat Transfer, 6: 209–222, 1983.

    Article  MATH  Google Scholar 

  21. R.W. Lewis K. Morgan and O.C. Zienkiewicz. An improved algorithm for heat conduction problems with phase change. International Journal for Numerical Methods in Engineering, 12: 1191–1195, 1978.

    Article  ADS  Google Scholar 

  22. R.W. Lewis and H.C. Huang. A finite element analysis of fire resisting cabinets using an adaptive remeshing technique. Applied Mathematical Modelling, (to be published in 1991 ).

    Google Scholar 

  23. R.W. Lewis and P.M. Roberts. Finite element simulation of solidification problems. Applied Scientific Research, 44: 61–92, 1987.

    Article  MATH  Google Scholar 

  24. E.C. Lemmon. Multidimensional integral phase change approxima-tions for finite element conduction codes. In R.W. Lewis, K. Morgan, and O.C. Zienkiewicz, editors, Numerical Methods in Heat Trafsfer. Wiley, Chichester, 1981.

    Google Scholar 

  25. R. Viskanta. Phase change heat transfer. In G.A.Lane, editor, Solar Heat Storage Latent Heat Materials. CRC Press, 1983.

    Google Scholar 

  26. V.R. Voller, M. Cross, and N.C. Markatos. An enthalpy method for convection/diffusion phase change. International Journal for Numerical Methods in Engineering, 24: 271–284, 1987.

    Article  MATH  Google Scholar 

  27. W.D. Rolph and K.J. Bathe. An efficient algorithm for analysis of nonlinear heat transfer with phase changes. International Journal for Numerical Methods in Engineering, 18: 119–134, 1982.

    Article  MATH  Google Scholar 

  28. J. Roose and O. Storrer. Modelization of phase changes by fictitious heat flow. International Journal for Numerical Methods in Engineering, 20: 217–225, 1984.

    Article  MATH  Google Scholar 

  29. O.C. Zienkiewicz. The Finite Element Method. McGraw-Hill Book Company (UK) Limited, London, 1977.

    Google Scholar 

  30. H.S. Carslaw and J.C. Jaeger. Conduction of Heat in Solids. Clarendon Press, Oxford, 1959.

    Google Scholar 

  31. Jr. C. Hastings. Approximations for Digital Computers. Princeton University Press, Princeton,N.J., 1955.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag London Limited

About this chapter

Cite this chapter

Huang, HC., Usmani, A.S. (1994). Phase Transformation. In: Finite Element Analysis for Heat Transfer. Springer, London. https://doi.org/10.1007/978-1-4471-2091-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2091-9_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2093-3

  • Online ISBN: 978-1-4471-2091-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics