Skip to main content

Molecular Genetics of Wilms’ Tumour and Renal Cell Carcinoma

  • Chapter
Tumours in Urology
  • 120 Accesses

Abstract

It is now generally accepted that cancer is caused by an accumulation of genetic mutations. However, only a small proportion of cancer-associated gene mutations are inherited (i.e. are germline mutations); the majority of gene mutations in cancer cells are acquired (somatic mutations) and are secondary to environmental carcinogens such as radiation, cigarette smoking or chemicals. Almost all human cancers occur in both sporadic and inherited forms (Hodgson and Maher 1992), and it appears that mutations in a restricted number of genes are involved in the genesis of both sporadic and inherited cancers. Consequently, the identification of the genetic mutations responsible for familial cancers has become an important step in understanding the molecular pathology of human carcinogenesis. In familial cancer syndromes, although an inherited germline mutation accounts for the cancer predisposition, this alone is not sufficient to produce a tumour and additional acquired mutations are also necessary. In this chapter the molecular pathology of Wilms’ tumour and renal cell carcinoma is discussed with particular emphasis on how the investigation of rare inherited cancer syndromes is contributing towards understanding the molecular genetics of these tumours.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Anglard P, Tory K, Brauch H et al. (1991) Molecular analysis of genetic changes in the origin and development of renal cell carcinoma. Cancer Res 51: 1071–1077

    PubMed  CAS  Google Scholar 

  • Beckwith JB, Kiviat NB, Bonadio JF (1990) Nephrogenic rests, nephroblastomatosis and the pathogenesis of Wilms’ tumor. Pediatr Pathol 10: 1–36

    Article  PubMed  CAS  Google Scholar 

  • Bergerheim U, Nordenskjöld M, Collins VP (1989) Deletion mapping in human renal cell carcinoma. Cancer Res 49: 1390–1396

    PubMed  CAS  Google Scholar 

  • Bishop JM (1991) Molecular themes in oncogenesis. Cell 64: 235–248

    Article  PubMed  CAS  Google Scholar 

  • Boldog FL, Gemmill RM, Wilke CM et al. (1993). Positional cloning of the hereditary 3;8 chromosome translocation breakpoint. Proc Natl Acad Sci USA 90: 8509–8513

    Article  PubMed  CAS  Google Scholar 

  • Brauch H, Tory K, Linehan WM et al. (1990) Molecular analysis of the short arm of chromosome 3 in five renal oncocytomas. J Urol 143: 622–624

    PubMed  CAS  Google Scholar 

  • Call KM, Glaser T, Ito CY et al. (1990) Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus. Cell 60: 509–520

    Article  PubMed  CAS  Google Scholar 

  • Cavanee WK, Dryja TP, Phillips RA et al. (1983) Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature 305: 779–881

    Article  Google Scholar 

  • Cohen AJ, Li FP, Berg S et al. (1979) Hereditary renal cell carcinoma associated with a chromosomal translocation. N Engl J Med 301: 592–595

    Article  PubMed  CAS  Google Scholar 

  • Cowell JK, Wadey RB, Haber DA et al. (1991) Structural rearrangements of the WT1 gene in Wilms’ tumour cells. Oncogene 6: 595–599.

    PubMed  CAS  Google Scholar 

  • Crossey PA, Foster K, Richards FM. (1994) Molecular genetic investigation of the mechanism of tumourigenesis in von Hippel-Lindau disease: Analysis of allele loss in VHL tumours. Human Genet (in press)

    Google Scholar 

  • Dalcin P, Gaeta J, Huben R et al. (1989) Renal cortical tumors. Cytogenetic characterization. Am J Clin Pathol 92: 408–414

    CAS  Google Scholar 

  • De Chiara TM, Robertson EJ, Efstratiadis A (1991) Parental imprinting of the mouse insulin–like growth factor II. Cell 64: 849–859

    Article  Google Scholar 

  • Dowdy SF, Fasching CL, Araujo D et al. (1991) Suppression of tumorigenicity in Wilms’ tumor by the pl5.5–pl4 region of chromosome 11. Science 254: 293–295

    Article  PubMed  CAS  Google Scholar 

  • Erlandsson R, Boldog F, Siimegi J, Klein G (1988) Do human renal cell carcinomas arise by a double–loss mechanism? Cancer Genet Cytogenet 36: 197–202

    Article  PubMed  CAS  Google Scholar 

  • Feinberg AP (1993) Genomic imprinting and gene activation in cancer. Nature Genet 4: 110–113

    Article  PubMed  CAS  Google Scholar 

  • Ferguson-Smith AC, Reik W, Surani MA (1990) Genomic imprinting and cancer. Cancer Surv 9: 487–503

    PubMed  CAS  Google Scholar 

  • Ferguson-Smith AC, Cattanach BM, Barton SC, Breehey CV, Surani MA (1991) Embryological and molecular investigations of parental imprinting on mouse chromosome 7. Nature 351: 667–670

    Article  PubMed  CAS  Google Scholar 

  • Fill WL, Lamiell JM, Polk NO (1979) Radiographic manifestations of von Hippel-Lindau disease. Radiology 133: 289–291

    PubMed  CAS  Google Scholar 

  • Friend SH, Bernards R, Rogelj S et al. (1986) A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323: 643–644

    Article  PubMed  CAS  Google Scholar 

  • Fujita J, Kraus MH, Onoue H et al. (1988) Activated H-ras oncogenes in human kidney tumors. Cancer Res 48: 5251–5255

    PubMed  CAS  Google Scholar 

  • Gessler M, Poustka A, Cavenee W, Neve RL, Orkin SH, Bruns GA (1990) Homozygous deletion in Wilms’ tumours of a zinc–finger gene identified by chromosome jumping. Nature 343: 774–778

    Article  PubMed  CAS  Google Scholar 

  • Gomella LG, Anglard P, Sargent ER, Robertson CN, Kasid A, Linehan WM (1990) Epidermal growth factor receptor gene analysis in renal cell carcinoma. J Urol 143: 191–193

    PubMed  CAS  Google Scholar 

  • Grundy P, Koufos A, Morgan K, Li FP, Meadows AT, Cavenee WK (1988) Familial predisposition to Wilms’ tumour does not map to the short arm of chromosome 11. Nature 336: 374–376

    Article  PubMed  CAS  Google Scholar 

  • Harris H, Miller OJ, Klein G, Worst P, Tachibam T (1969) Suppression of malignancy by cell fusion. Nature 223: 363–368

    Article  PubMed  CAS  Google Scholar 

  • Henry I, Grandjouan S, Couillan P et al. (1989) Tumor-specific loss of llpl5.5 alleles in delllpl3 Wilms’ tumor and in familial adrenocortical carcinoma. Proc Natl Acad Sci USA 86: 3247–3251

    Article  PubMed  CAS  Google Scholar 

  • Henry I, Bonaiti-Pellie C, Chehensse, Beldjord C, Schwartz C, Utermann G, Junien C (1991). Uniparental disomy in a genetic cancer-predisposing syndrome. Nature 351: 665–667

    Article  PubMed  CAS  Google Scholar 

  • Hibi K, Takahashi T, Yamakawa K et al. (1992) Three distinct regions involved in 3p deletion in human lung cancer. Oncogene 7: 445–449

    PubMed  CAS  Google Scholar 

  • Hodgson SV, Maher ER (1993) A practical guide to human cancer genetics. Cambridge University Press, Cambridge.

    Google Scholar 

  • Horton WA, Wong V, Eldridge R (1976) Von Hippel-Lindau disease. Arch Intern Med 136: 769–777

    Article  PubMed  CAS  Google Scholar 

  • Hosoe S, Brauch H, Latif F et al. (1990) Localization of the von Hippel-Lindau disease gene to a small region of chromosome 3. Genomics 8: 634–640

    Article  PubMed  CAS  Google Scholar 

  • Huff V, Compton DA, Chao LY, Strong LC, Geiser CF, Saunders GF (1988) Lack of linkage of familial Wilms’ tumour to chromosomal band llpl3. Nature 336: 377–378

    Article  PubMed  CAS  Google Scholar 

  • Huff V, Miwa H, Haber DA et al. (1991) Evidence for WT1 as a Wilms’ tumor (WT) gene: intragenic germinal deletion in bilateral WT. Am J Hum Genet 48: 997–1003

    PubMed  CAS  Google Scholar 

  • Ishikawa J, Maeda S, Umezu K, Sugiyama T, Kamidono S (1990) Amplification and overexpression of the epidermal growth factor receptor gene in human renal–cell carcinoma. Int J Cancer 45: 1018–1021

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa J, Xu HJ, Hu SX et al. (1991) Inactivation of the retinoblastoma gene in human bladder and renal cell carcinomas. Cancer Res 51: 5736–5743

    PubMed  CAS  Google Scholar 

  • Jadresic L, Wadey RB, Buckle B, Barratt TM, Mitchell CD, Cowell JK (1991) Molecular analysis of chromosome region llpl3 in patients with Drash syndrome. Hum Genet 86: 497–501

    Article  PubMed  CAS  Google Scholar 

  • Jeanpierre C, Antignac C, Beroud C et al. (1990) Constitutional and somatic deletions of two different regions of maternal chromosome 11 in Wilms’ tumor. Genomics 7: 434–438

    Article  PubMed  CAS  Google Scholar 

  • Kaneko Y, Homma C, Maseki N, Sakurai M, Hata (1991) Correlation of chromosome abnormalities with histological and clinical features in Wilms’ and other childhood renal tumors. Cancer Res 51: 5937–5942

    CAS  Google Scholar 

  • King CR, Schimke RN, Arthur T, Davoren B, Collins D (1987) Proximal 3p deletion in renal cell carcinoma cells from a patient with von Hippel-Lindau disease. Cancer Genet Cytogenetic 27: 345–348

    Article  PubMed  CAS  Google Scholar 

  • Knudson AG (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68: 820–823

    Article  PubMed  Google Scholar 

  • Knudson AG (1993) Antioncogenes and human cancer. Proc Natl Acad Sci USA 90: 10914–10921

    Article  PubMed  CAS  Google Scholar 

  • Knudson AG, Strong LC (1972) Mutation and cancer: neuroblastoma and phaeochromocytoma. Am J Hum Genet 24: 514–532

    PubMed  Google Scholar 

  • Koufos A, Grundy P, Morgan K et al. (1989) Familial Wiedemann–Beckwith syndrome and a second Wilms’ tumor locus both map to llpl5.5. Am J Hum Genet 44: 711–719

    PubMed  CAS  Google Scholar 

  • Kovacs G, Hoene E (1988) Loss of der(3) in renal carcinoma cells of a patient with constitutional t(3;12). Hum Genet 78: 148–150

    Article  PubMed  CAS  Google Scholar 

  • Kovacs G, Kung HF (1991) Nonhomologous chromatid exchange in hereditary and sporadic renal cell carcinomas. Proc Natl Acad Sci USA 88: 194–198

    Article  PubMed  CAS  Google Scholar 

  • Kovacs G, Erlandsson R, Boldog F et al. (1988) Consistent chromosome 3p deletion and loss of heterozygosity in renal cell carcinoma. Proc Natl Acad Sci USA 85: 1571–1575

    Article  PubMed  CAS  Google Scholar 

  • Kovacs G, Brusa P, De Riese W (1989a) Tissue–specific expression of a constitutional 3;6 translocation: development of multiple bilateral renal–cell carcinomas. Int J Cancer 43: 422–427

    Article  PubMed  CAS  Google Scholar 

  • Kovacs G, Wilkens L, Papp T, de Riese W (1989b) Differentiation between papillary and nonpapillary renal cell carcinomas by DNA analysis. J Natl Cancer Inst 81: 527–530

    CAS  Google Scholar 

  • Kovacs G, Welter C, Wilkens L, Blin N, Deriese W (1989c) Renal oncocytoma. A phenotypic and genotypic entity of renal parenchymal tumors. Am J Pathol 134: 967–971

    Google Scholar 

  • Latif F, Tory K, Gnarra J et al. (1993) Identification of the von Hippel-Lindau disease tumour suppressor gene. Science 260: 1317–1320

    Article  PubMed  CAS  Google Scholar 

  • Little M, van Heyningen V, Hastie N (1991) Dads and disomy and disease. Nature 351: 609–610

    Article  PubMed  CAS  Google Scholar 

  • Maher ER, Yates JR (1991) Familial renal cell carcinoma: clinical and molecular genetic aspects [editorial]. Br J Cancer 63: 176–179

    Article  PubMed  CAS  Google Scholar 

  • Maher ER, Yates JRW, Harries R et al. (1990a) Clinical features and natural history of von Hippel-Lindau disease. Q J Med 77: 1151–1163

    PubMed  CAS  Google Scholar 

  • Maher ER, Yates JRW, Ferguson-Smith MA (1990b) Statistical analysis of the two stage mutaion model in von Hippel-Lindau disease and in sporadic cerebellar aemangioblastoma and renal cell carcinoma. J Med Genet 27: 311–314

    Article  PubMed  CAS  Google Scholar 

  • Maher ER, Iselius L, Yates JRW et al. (1991a) Von Hippel-Lindau disease: a genetic study. J Med Genet 28: 443–447

    Article  PubMed  CAS  Google Scholar 

  • Maher ER, Bentley E, Yates JRW et al. (1991b) Mapping of the von Hippel-Lindau disease locus to a small region of chromosome 3p by genetic linkage analysis. Genomics 10: 957–960

    Article  PubMed  CAS  Google Scholar 

  • Matsunaga E (1981) Genetics of Wilms’ tumor. Hum Genet 57: 231–246

    Article  PubMed  CAS  Google Scholar 

  • Morita R, Ishikawa J, Tsutsumi M et al. (1991a) Allelotype of renal cell carcinoma. Cancer Res 51: 820–823

    PubMed  CAS  Google Scholar 

  • Morita R, Saito S, Ishikawa J et al. (1991b) Common regions of deletion on chromosomes 5q, 6q, and lOq in renal cell carcinoma. Cancer Res 51: 5817–5820

    PubMed  CAS  Google Scholar 

  • Morris JF, Madden SL, Tournay OE, Cook DM, Sukhatme VP, Rauscher FJ (1991) Characterization of the zinc finger protein encoded by the WT1 Wilms’ tumor locus. Oncogene 6: 2339–2348

    PubMed  CAS  Google Scholar 

  • Narahara K, Kikkawa K, Kimira S et al. (1984) Regional mapping of catalase and Wilms’ tumoraniridia, genitourinary abnormalities and mental retardation triad loci to the chromosome segment llpl3. Hum Genet 66: 181–185

    Article  PubMed  CAS  Google Scholar 

  • Ogawa O, Kakehi Y, Ogawa K, Koshiba M, Sugiyama T, Yoshida O (1991) Allelic loss at chromosome 3p characterizes clear cell phenotype of renal cell carcinoma. Cancer Res 51: 949–953

    PubMed  CAS  Google Scholar 

  • Ogawa O, Eccles MR, Szeto J et al. (1993) Nature 362: 749–751

    Article  PubMed  CAS  Google Scholar 

  • Oka K, Ishikawa J, Bruner JM, Takahashi R, Saya H (1991) Detection of loss of heterozygosity in the p53 gene in renal cell carcinoma and bladder cancer using the polymerase chain reaction. Mol Carcinog 4: 10–13

    Article  PubMed  CAS  Google Scholar 

  • Olney AH, Buehler BA, Waziri M (1988) Wiedemann–Beckwith syndrome in apparently discordant monozygotic twins. Am J Med Genet 29: 491–499

    Article  PubMed  CAS  Google Scholar 

  • Park S, Bernard A, Bove KE et al. (1993) Inactivation of WT1 in nephrogenic rests, genetic precursors to Wilms’ tumour. Nature Genet 5: 363–367

    Article  PubMed  CAS  Google Scholar 

  • Pathak S, Strong LC, Ferrell RE, Trindade A (1982) Familial renal cell carcinoma with a 3:11 chromosome translocation limited to tumor cells. Science 217: 939–941

    Article  PubMed  CAS  Google Scholar 

  • Pelletier J, Breuning W, Kashtan CE et al. (1991a) Germline mutations in the Wilms’ tumor suppressor gene are associated with abnormal urogenital development in Denys–Drash syndrome. Cell 67: 437–447

    Article  PubMed  CAS  Google Scholar 

  • Pelletier J, Bruening W, Li FP, Haber DA, Glaser T, Housman DE (1991b) WT1 mutations contribute to abnormal genital system development and hereditary Wilms’ tumour. Nature 353, 431–434

    Article  PubMed  CAS  Google Scholar 

  • Ping AJ, Reeve AE, Law DJ, Young MR, Boehnke M, Feinberg AP (1989) Genetic linkage of Beckwith-Wiedemann syndrome llpl5. Am J Hum Genet 44: 720–723

    PubMed  CAS  Google Scholar 

  • Presti Jr JC, Rao PH, Chen Q et al. (1991) Histopathological, cytogenetic, and molecular characterization of renal cortical tumors. Cancer Res 51: 1544–1552

    PubMed  Google Scholar 

  • Pritchard-Jones K, Fleming S, Davidson D et al. (1990) The candidate Wilms’ tumour gene is involved in genitourinary development. Nature 346: 194–197

    Article  PubMed  CAS  Google Scholar 

  • Rainier S, Johnson LA, Dobry CJ, Ping AJ, Grundy PE, Feinberg AP (1993) Relaxation of imprinted genes in human cancer. Nature 362: 747–749

    Article  PubMed  CAS  Google Scholar 

  • Rauscher FJ, Morris JF, Tournay SE, Cook DM, Curran T (1990) Binding of the Wilms’ tumor locus zinc finger protein to the EGR–1 consensus sequence. Science 250: 1259–1262

    Article  PubMed  CAS  Google Scholar 

  • Richards F M, Crossey P A, Phipps M E et al. (1994) Detailed mapping of germline deletions of the von Hippel-Landau disease tumour suppressor gene. Hum Mol Geriet 3: 595–598

    Article  CAS  Google Scholar 

  • Sargent ER, Gomella LG, Belldegrun A, Linehan WM, Kasid A (1989) Epidermal growth factor receptor gene expression in normal human kidney and renal cell carcinoma. J Urol 142: 1364–1368

    PubMed  CAS  Google Scholar 

  • Schwartz CE, Haber DA, Stanton VP, Strong LC, Skolnick MH, Housman DE (1991) Familial predisposition to Wilms’ tumor does not segregate with the WT1 gene. Genomics 10: 927–930

    Article  PubMed  CAS  Google Scholar 

  • Scizinger BR, Smith DI, Filling-Katz MR et al. (1991) Genetic flanking markers refine diagnostic criteria and provide insights into the genetics of von Hippel-Lindau disease. Proc Natl Acad Sci USA 88: 2864–2868

    Article  Google Scholar 

  • Shimizu M, Yokota J, Mori N et al. (1990) Introduction of normal chromosome 3p modulates the tumorigenicity of a human renal cell carcinoma cell line YCR. Oncogene 5: 185–194

    PubMed  CAS  Google Scholar 

  • Solomon D, Schwartz A (1988) Renal pathology in von Hippel-Lindau disease. Hum Pathol 19: 1072–1079

    Article  PubMed  CAS  Google Scholar 

  • Teyssier JR, Henry I, Dozier C, Ferre D, Adnet JJ, Pluot M (1986) Recurrent deletion of the short arm of chromoosome 3 in human renal cell carcinoma: shift of the c-raf locus. J Natl Cancer Inst 77: 1187–1195

    PubMed  CAS  Google Scholar 

  • Tory K, Brauch H, Linehan M et al. (1989) Specific genetic change in tumours associated with von Hippel-Lindau disease. J Natl Cancer Inst 81: 1097–1101

    Article  PubMed  CAS  Google Scholar 

  • Van der Hout AH, van der Vlies P, Wijmenga C, Li FP, Oosterhuis JW, Buys CHCM (1991) The region of common allelic losses in sporadic renal cell carcinoma is bordered by the loci D3S2 and THRB. Genomics 11: 537–542

    Article  PubMed  Google Scholar 

  • van Heyningen V, Bickmore WA, Seawright A et al. (1990) Role for Wilms’ tumor gene in genital development? Proc Natl Acad Sci USA 87: 5383–5386

    Article  PubMed  Google Scholar 

  • Wang N, Perkins KL (1984) Involvement of band 3pl4 in t(3;8) hereditary renal carcinoma. Cancer Genet Cytogenet 11: 479–480

    Article  PubMed  CAS  Google Scholar 

  • Washecka R, Hanna M (1991) Malignant renal tumours in tuberous sclerosis. Urology 37: 340–343

    Article  PubMed  CAS  Google Scholar 

  • Weidner U, Peter S, Strohmeyer T, Hussnätter R, Ackermann R, Sies H (1990) Inverse relationship of epidermal growth factor receptor and HER2 neu gene expression in human renal cell carcinoma. Cancer Res 50: 4504–4509

    PubMed  CAS  Google Scholar 

  • Wiedemann HR (1983) Tumours and hemihypertrophy associated with Wiedemann–Beckwith syndrome. Eur J Pediatr 141: 129–130

    Article  Google Scholar 

  • Yamakawa K, Morita R, Takahashi E, Hori T, Ishikawa J, Nakamura Y (1991) A detailed deletion mapping of the short arm of chromosome 3 in sporadic renal cell carcinoma. Cancer Res 51: 4707–4711

    PubMed  CAS  Google Scholar 

  • Zbar B, Brauch H, Talmadge C, Lineham M (1987) Loss of alleles of loci on the short arm of chromosome 3 in renal cell carcinoma. Nature 327: 721–724

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag London Limited

About this chapter

Cite this chapter

Maher, E.R. (1994). Molecular Genetics of Wilms’ Tumour and Renal Cell Carcinoma. In: Neal, D.E. (eds) Tumours in Urology. Springer, London. https://doi.org/10.1007/978-1-4471-2086-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2086-5_13

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2088-9

  • Online ISBN: 978-1-4471-2086-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics