ICANN ’93 pp 806-809 | Cite as

Self-Organizing Neural Network for Diagnosis

  • Pietro Morasso
  • Alberto Pareto
  • Stefano Pagliano
  • Vittorio Sanguineti
Conference paper

Abstract

The paper describes an approach to diagnostic applications that uses a selforganizing classifier, capable of performing incremental learning and of dealing with noisy data, and allows to estimate the distance from pathological regions and the time-to-failure.

Keywords

Metaphor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Le Cun, Y., Denker, J.S., and S.A. Solla (1990) Optimal brain damage. In “Advances in neural information processing systems” (D.S. Touretzky ed.), 2, Morgan Kaufman, 598–605.Google Scholar
  2. [2]
    Reilly, D.L., Cooper, L.N., and C. Elbaum (1982) A neural model for category learning. Biological Cybernetcs, 45, 35–41.CrossRefGoogle Scholar
  3. [3]
    Alpaydin, E. (1991) Grow and learn: an incremental method for category learning. International Neural Network Conference, Paris, France.Google Scholar
  4. [4]
    Fritzke, B. (1991) Let it grow. Self-organizing feature maps with problem dependent cell structure. In “Artificial Neural Networks” (T. Kohonen, K. Makisara, O. Simula, and J. Kangas, Eds.), 1, 403–408, North Holland, Amsterdam.Google Scholar
  5. [5]
    Morasso, P., Pagliano, S., and A. Pareto (1992) Neural models for handwriting recognition. In “Proceedings of the Second International Workshop on Frontiers in Handwriting Recognition” (S. Impedovo and J.C. Simon, Editors), Elsevier, Amsterdam.Google Scholar
  6. [6]
    Kohonen, T. (1989) Self-Organisation and Associative Memory (3rd ed.). Springer-Verlag Series in Information Sciences, Berlin.Google Scholar
  7. [7]
    Martinetz, T. and K. Schulten (1991) A “neural gas” network learns topologies. In “Artificial Neural Networks” (T. Kohonen, K. Makisara, O. Simula, and J. Kangas, Eds.), 1, 397–402, North Holland, Amsterdam.Google Scholar
  8. [8]
    Specht, D. F. (1990) Probabilistic neural networks, Neural Networks, 3, 109–118.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 1993

Authors and Affiliations

  • Pietro Morasso
    • 1
  • Alberto Pareto
    • 1
  • Stefano Pagliano
    • 1
  • Vittorio Sanguineti
    • 1
  1. 1.Department of Informatics, Systems, and TelecommunicationsUniversity of GenovaItaly

Personalised recommendations