Skip to main content

Modelling of Distributed Feedback Lasers

  • Chapter
Book cover Compound Semiconductor Device Modelling

Abstract

This chapter describes how laser diodes for optical communication, with their complex structure and physical interactions can be simulated. These lasers are usually of such a nature that variations in the lateral and transverse direction, as well as the electronic transport problem can be treated in a most simplified way, while longitudinal and spectral variations need to be taken into account in a detailed way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Petermann, “Laser Diode Modulation and Noise”, KTK Publishers, Tokyo, 1988.

    Book  Google Scholar 

  2. G. Agrawal, N. Dutta, “Long-wavelength semiconductor lasers”, Van Nostrand Reinhold, New York, 1986.

    Google Scholar 

  3. M. Amann, “New stripe-geometry laser with simplified fabrication process”, El. Lett., Vol. 15, pp.441–442, July, 1979.

    Article  Google Scholar 

  4. K. Saito, R. Ito, “Buried-heterostructure AlGaAs lasers”, IEEE Journ. Quant. El., Vol. 16, pp. 205–215, February, 1980.

    Article  Google Scholar 

  5. D. Cook, F. Nash, “Gain-induced guiding and astigmatic output beam of GaAs lasers”, Journ. Appl. Phys., Vol. 46, p. 1660, 1975.

    Article  Google Scholar 

  6. H. Casey, M. Panish, “Heterostructure Lasers, part A: Fundamental Principles”, Academic Press, New York, 1978.

    Google Scholar 

  7. M. Asada, Y. Suematsu, “Density-matrix theory of semiconductor lasers with relaxation broadening model: gain and gain-suppression in semiconductor lasers”, IEEE Journ. Quant. EL, Vol. 21, pp. 434–442, May, 1985.

    Article  Google Scholar 

  8. A. Yariv, “Quantum Electronics”, 2nd Ed., Wiley, New York, 1980.

    Google Scholar 

  9. D. Marcuse, “Principles of Quantum Electronics”, Academic Press, New York, 1980.

    Google Scholar 

  10. P. Vankwikelberge, “Theoretische studie van statische en dynamische longitudinale effecten in Fabry-Perot en DFB-diodelasers”, Ph. D. thesis (in Dutch), university of Gent, 1990.

    Google Scholar 

  11. G. Thompson, “Physics of semiconductor laser devices”, Wiley, New York, 1980.

    Google Scholar 

  12. M Lax, “Classical Noise IV: Langevin Methods”, Rev. Mod. Phys., Vol. 38, pp. 541–566, July, 1966.

    Article  MATH  MathSciNet  Google Scholar 

  13. C. Henry, “Theory of Spontaneous Emission Noise in Open Resonators and its Application to Lasers and Optical Amplifiers”, Journ. Lightw. Techn., Vol. 4, pp. 288–297, March, 1986.

    Article  Google Scholar 

  14. J. D. Jackson, “Classical Electrodynamics”, Wiley, New York, 1962.

    Google Scholar 

  15. P. Vankwikelberge, G. Morthier, R. Baets, “CLADISS, a longitudinal, multi mode model for the analysis of the static, dynamic and stochastic behaviour of diode lasers with distributed feedback”, IEEE Journ. Quant. EL, October 1990.

    Google Scholar 

  16. P. Vankwikelberge, G. Morthier, K. David, R. Baets, “CLADISS, a new diode laser simulator”, Technical Digest Topical Meeting on Integrated Photonics Research, Hilton Head, March, 1990.

    Google Scholar 

  17. J. Buus, “Mode selectivity in DFB lasers with cleaved facets”, Electron. Lett., Vol. 21, pp. 179–180, 1985.

    Article  Google Scholar 

  18. P. Mols, P. Kuindersma, W. Van Es, I. Baele, “Yield and device charac-teristics of DFB lasers: statistics and novel coating design in theory and experiment”, IEEE Journ. Quant. EL, Vol.25, June, 1989.

    Google Scholar 

  19. G. Morthier, F. Libbrecht, K. David, P. Vankwikelberge, R. Baets, “Theoretical investigation of the 2nd order harmonic distortion in the AM-response of 1.55 µm F-P and DFB lasers”, IEEE Journ. Quant. EL, Vol. 27, pp. 1990–2002, August, 1991.

    Article  Google Scholar 

  20. K. Lau, A. Yariv, “Intermodulation distortion in semiconductor injection lasers”, Appl. Phys. Lett., Vol. 45, pp. 1034–1036, 1984.

    Article  Google Scholar 

  21. ’Subroutine COLROW, Algorithm 603, ACM-Trans. Math. Software, Vol. 9, pp. 376–380, September, 1983.

    Article  MathSciNet  Google Scholar 

  22. K. Vahala, A. Yariv, “Semiclassical Theory of Noise in Semiconductor Lasers - Part I”, IEEE Journ. Quant. EL, Vol. 19, pp. 1096–1101, June, 1983.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag London Limited

About this chapter

Cite this chapter

Morthier, G.J.I., Baets, R.G. (1993). Modelling of Distributed Feedback Lasers. In: Snowden, C.M., Miles, R.E. (eds) Compound Semiconductor Device Modelling. Springer, London. https://doi.org/10.1007/978-1-4471-2048-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2048-3_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2050-6

  • Online ISBN: 978-1-4471-2048-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics