Skip to main content

Gunn Diode and IMPATT Diode Modelling

  • Chapter
Book cover Compound Semiconductor Device Modelling
  • 313 Accesses

Abstract

Transferred-electron devices (utilizing the bulk negative resistance of gallium arsenide, indium phosphide or related compounds) and avalanche devices that use impact ionization in high electric field — are the most powerful solid-state sources of microwave energy. In this Chapter, we discuss different approaches to modeling these devices. First, we consider the mechanism responsible for the negative differential mobility in GaAs. Then we discuss and compare a full blown self-consistent Monte Carlo simulation of transferred electron devices with a much simpler (but a far less accurate) approach based on the drift-diffusion equation. Then we consider IMPATT devices which use phase delays related to avalanche breakdown and carrier drift in a semiconductor diode and discuss additional problems involved in modeling IMPATT devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • K. Bløtekjaer, Transport Equations for Two-Valley Semiconductors, IEEE Trans. Electron Devices, ED-17, No. 1, pp. 38–47, Jan. (1970)

    Article  Google Scholar 

  • K. H. Brennan, N. Mansour, and Y. Wang, Simulation of Advanced Semiconductor Devices Using Supercomputers, Computer Physics Communications, vol. 67, No. 1, pp. 173–92 (1991)

    Article  Google Scholar 

  • M. Curow, Applied Physics Letters, (1992)

    Google Scholar 

  • M. I. D’yakonov, M. E. Levinshtein, and G. S. Simin, Soviet Phys. Semicond., 13, No. 7, pp. 1365–1368(1981)

    Google Scholar 

  • R. S. Engelbrecht, Bulk Effect Devices for Future Transmission Systems, Beff Lab. Rec., 45, No. 6, pp. 192–201 (1967)

    Google Scholar 

  • B. Gelmont, K.-S. Kim, and M. S. Shur, Theory of Impact Ionization and Auger Recombination in HgCdTe, Phys. Rev. Lett., 69, No. 8, pp. 1280–1283, August (1992)

    Article  Google Scholar 

  • H. Gummel, A Self-consistent Iterative Scheme for One-dimensional Steady State Transistor Calculations, IEEE Trans. Electron Devices, ED-11, pp. 455–465 (1964)

    Article  Google Scholar 

  • J. B. Gunn, Microwave Oscillations of current in III–V semiconductors, Solid State Communications, 1 (4), pp. 88–91 (1963)

    Article  Google Scholar 

  • J. B. Gunn, Electron Transport Properties Relevant to Instabilities in GaAs, J. Phys. Soc. Jap., Supplement, pp. 509–513 (1966)

    Google Scholar 

  • C. Hilsum, Transferred Electron Amplifiers and Oscillators, Proc. IRE, 50,(2), pp. 185–189 (1962).

    Article  Google Scholar 

  • C. Jacoboni and P. Lugli, The Monte Carlo Method for Semiconductor Simulation, Springer Series on Computational Microelectronics, ed. S. Selberherr, Springer-Verlag, Wien, New York (1989)

    Google Scholar 

  • G.U. Jensen, B. Lund, M. Shur, and T.A. Fjeldly, Monte Carlo Simulation of Short Channel Heterostructure Field Effect Transistors, Computer Physics Communications, vol. 67, No. 1, pp. 1–61 (1991)

    Article  MATH  Google Scholar 

  • R. L. Johnston, B. C. DeLoach, Jr., and B. G. Cohen, Bell Syst. Tech. J., 44, p. 369 (1965)

    Google Scholar 

  • S. H. Jones, G. B. Tait, and M. Shur, Modulated-Impurity-Concentration Transferred-Electron Devices Exhibiting Large Harmonic Frequency Content, Microwave and Optical Technology Letters, vol. 5, No. 8, pp. 354–359, July (1992)

    Article  Google Scholar 

  • H. Kroemer, Proc. IEEE, 53, No. 9, p. 1246 (1965)

    Article  Google Scholar 

  • T. Misawa, IEEE Trans. Electron Devices, ED-13, No. 9, p. 137 (1966)

    Article  Google Scholar 

  • H. J. Prager, K. K. N. Chang, and S. Weisbrod, High Power, High Efficiency Silicon Avalanche Diodes at Ultrahigh Frequencies, Proc. IEEE, 55, p. 586 (1967)

    Article  Google Scholar 

  • PRIZM manual, Silvaco (1992)

    Google Scholar 

  • W. T. Read, Bell Syst. Tech. J., 37, p. 401 (1958)

    Google Scholar 

  • H. D. Rees, Hot Electron Effects at Microwave Frequencies in GaAs, Solid State Comm., 7, No. 2, pp. 267–269 (1969)

    Article  MathSciNet  Google Scholar 

  • B. K. Ridley and T. B. Watkins, The Possibility of Negative Resistance, Proc. Phys. Soc., 78 (8), pp. 293–304 (1961)

    Article  Google Scholar 

  • D. L. Scharfetter, D. J. Bartelink, H. K. Gummel, and R. L. Johnson, IEEE Trans. Electron Devices, ED-15, p. 691 (1968)

    Article  Google Scholar 

  • M. Shoji, Functional Bulk Semiconductor Oscillators, IEEE Trans. Electron Devices, ED-14, No. 9, pp. 533–546 (1967)

    Google Scholar 

  • M. Shur, Influence of Non-Uniform Field Distribution in the Channel on the Frequency Performance of GaAsFETs, Electronics Letters, 12, No. 23, pp. 615–616 (1976)

    Article  Google Scholar 

  • M. Shur, GaAs Devices and Circuits, Plenum Publishing, New York (1987)

    Google Scholar 

  • M. Shur, Physics of Semiconductor Devices, Prentice Hall, New Jersey (1990)

    Google Scholar 

  • G. B. Tait and C. M. Krowne, Efficient Transferred Electron Device Simulation Method for Microwave and Millimeter Wave CAD Applications, Solid-State Electronics, vol. 30, No. 10, pp. 1025–1036 (1987)

    Article  Google Scholar 

  • G. B. Tait and C. M. Krowne, Large Signal Characterizations of Unipolar III-V Semiconductor Diodes at Microwave and Millimeter-Wave Frequencies, IEEE Trans. Electron Devices, ED-35, No. 2, pp. 223–229 (1988)

    Article  Google Scholar 

  • A. S. Tager, A. I. Mel’nikov, G. P. Kobel’kov, and A. M. Tsebiev, Discovery Diploma #24, priority date No. 27, 1959 (in Russian), see also A. S. Tager and V. M. Vald-Perlov, Lavinnoproletnye Diody (in Russian ), Soviet Radio (1968)

    Google Scholar 

  • J. Xu and M. Shur, IEEE Trans. Electron Devices, ED-34, No. 8, pp. 1831–1832 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag London Limited

About this chapter

Cite this chapter

Shur, M. (1993). Gunn Diode and IMPATT Diode Modelling. In: Snowden, C.M., Miles, R.E. (eds) Compound Semiconductor Device Modelling. Springer, London. https://doi.org/10.1007/978-1-4471-2048-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2048-3_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2050-6

  • Online ISBN: 978-1-4471-2048-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics