Skip to main content
  • 299 Accesses

Abstract

In physics and electrical engineering one often encounters fluctuating signals generated in electrical devices and circuits. These fluctuating signals are due to random events that modify the number and/or the velocity of carriers. So, at any point r of any device, the current density j fluctuates which induces a fluctuating voltage (or current) at the device electrodes. It should be noted that only these macroscopic current and voltage fluctuations can be measured. To illustrate this, figure (1) shows a DC biased device and AC signals are applied to some electrodes. Let us consider a small volume dV located at point r in the device. The fluctuations of the current density at point r induces voltage (or current density) fluctuations at any point r′ and consequently at the external electrodes. So, the voltage fluctuation at electrode M, resulting from the current density fluctuation at r depends on two factors:

  • the strength of the fluctuation at r (local or microscopic noise source)

  • the device structure between r and M (impedance field).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Cappy A. et al (1985) Noise modeling in submicrometer gate two dimensional electron gas field effect transistor. IEEE Trans. Electron Devices 32, n° 12 : 2787–2795.

    Article  Google Scholar 

  • Cappy A. (1988) Noise modeling and measurement techniques. IEEE Trans. MTT 36, n° 1 : 1–10.

    Google Scholar 

  • Cappy A., Heinrich W. (1989). The high frequency FET noise performance: A new approach IEEE Trans. Electron Devices 36, n° 2 : 403–410.

    Article  Google Scholar 

  • Edson W.A. (1960) Noise in oscillators. Proc. IRE, Vol. 48 : 1454–1466.

    Article  Google Scholar 

  • Fukui H. (1979) Optimal noise figure of microwave GaAs MESFET’s. IEEE Trans. Electron, devices, Vol. 26, n° 7 : 1032–1037.

    Article  Google Scholar 

  • Ghione G. et al (1989). Proc. Int. Elec. Dev. Meeting : 505.

    Google Scholar 

  • Ghione G. (1990). Proc. ESSDERC 90, Nottingham IOP Publ. Ltd : 225.

    Google Scholar 

  • Hillbrand H., Russer P. (1976) An efficient method for computer Aided Noise Analysis of linear Amplifier Networks IEEE Trans, on Circuits and Systems, Vol. CAS 23, n° 4 : 235–239.

    Article  Google Scholar 

  • Hooge F.N. (1976) 1./f noise, physica 83B : 14–23.

    Google Scholar 

  • Kurokawa K. (1968) Noise in synchronized oscillators. IEEE Trans. MTT, Vol. 16, n° 4 : 234–240.

    Article  MathSciNet  Google Scholar 

  • Nougier J.P. et al (1985) Method for modeling the noise of submicron devices. Physica 129 B : 580–582.

    Google Scholar 

  • Nougier J.P. et al (1983) Microscopic spatial correlations at thermal equilibrium in non polar semiconductors** Noise in physical systems and 1/f noise. North Holland, ed by M. Savelli, G. Lecoy: 15–19.

    Google Scholar 

  • Nougier J.P. et al (1981) Mathematical formulation of the impedance field method. Application to the noise in the channel of field effect transistors in Proc of 6th Int. Conf. Noise phy. Systems: 42–46.

    Google Scholar 

  • Nougier J.P. (1991) Noise in devices: Definition modelling III-V microelectronics. J.P. Nougier Editor. Elsevier Science publishers: 183–238.

    Google Scholar 

  • Nougier J.P. (1978) in Noise in Physical systems. Springer Ser. Electrophys. Vol. 2, Ed by D. Wolf. : 71.

    Google Scholar 

  • Pucel R.A. et al (1974) Signal and noise properties of GaAs field effect transistors. Advances Electron. Electron Physics. Vol. 38 : 135–265.

    Google Scholar 

  • Shockley W. et al (1966) The impedance field method of noise calculation in active semiconductor devices. In quantum theory of atoms, Molecules and solid state. Academic Press, New York, 1966 : 537–563.

    Google Scholar 

  • Thornber K.K. et al (1974), Structure of the langevin and impedance field methods of calculating noise in devices. Solid State Elect. Vol. 17 : 587–590.

    Article  Google Scholar 

  • Van Vliet K.M. et al (1975) Noise in single injection diodes. A survey of methods. J. Appl. Phys. Vol. 46, n° 4 : 1804–1813.

    Article  Google Scholar 

  • Van Vliet K.M. (1979) the transfer-impedance method for noise in field-effect transistors. Solid state Elec. vol. 22 : 233–236.

    Article  Google Scholar 

  • Van der Ziel A. (1988) Unified Presentation of 1/f Noise in Electronic Devices. Fundamental 1/f Noise sources. Proc. IEEE, vol. 76, n° 3 : 233–258.

    Article  Google Scholar 

  • Van der Ziel A (1962) Thermal noise in field effect Transistors. Proc. IRE 50 : 1808–1812.

    Article  Google Scholar 

  • Whiteside C. (1968) the DC, AC and noise properties of the GaAs/GaAlAs Modulation-doped Field effect transistor channel. IEEE Trans. on Electron. Dev. vol. 33.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag London Limited

About this chapter

Cite this chapter

Cappy, A. (1993). Noise Modelling. In: Snowden, C.M., Miles, R.E. (eds) Compound Semiconductor Device Modelling. Springer, London. https://doi.org/10.1007/978-1-4471-2048-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2048-3_10

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2050-6

  • Online ISBN: 978-1-4471-2048-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics