Skip to main content

Abstract

“Exact” solutions are difficult to obtain due to the fact that it is not easy to replace the governing partial differential equations by ordinary differential equations, and that the number and order of the resulting ordinary differential equations are large, so that manual solutions are generally impossible. In this chapter a generalized Kantorovich method is presented which will produce the governing ordinary differential equations automatically in a similar manner to the finite element method which produces algebraic governing equations. The mth order and nth degree governing ordinary differential equations will be solved in a computer-oriented manner so that the dynamic stiffness matrix can be formed automatically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F Laudiero, M. Savoia, D Zaccaria 1991. The influence of shear deformation on the stability of thin-walled beams under non-conservative loading. Int J Solids Struct 27,1351–1370

    Article  MATH  Google Scholar 

  2. A Libai, JG Simmonds 1988. The nonlinear theory of elastic shells in one spatial dimension. Academic Press

    Google Scholar 

  3. I. Gohberg, P. Lancaster, L. Rodman 1982. Matrix polynomials. Academic Press

    MATH  Google Scholar 

  4. YK Cheung, AYT Leung 1991. Finite element method in dynamic analysis. Kluwer Academic

    Google Scholar 

  5. AYT Leung 1991. Exact stiffness matrix for twisted helix beam. Finite Elements Anal Des 9, 23–32

    Article  Google Scholar 

  6. AYT Leung, TC Fung 1988. Spinning finite elements. J Sound Vib 125, 523–537

    Article  Google Scholar 

  7. PO Friberg 1985. Beam element matrices derived from Vlasov’s theory of open thin-walled elastic beams. Int J Num Meth Engng 21, 1205–1228

    Article  MATH  MathSciNet  Google Scholar 

  8. J E Mottershead 1980. Finite elements for dynamical analysis of helical rods. Int J Mech Sci 22, 267–283

    Article  MATH  Google Scholar 

  9. D Pearson 1982. The transfer matrix method for the vibration of compressed helical springs. Int J Mech Engng Sci 24, 163–171

    Article  Google Scholar 

  10. D Pearson, WH Wittrick 1986. An exact solution for the vibration of helical springs using a Bernoulli-Euler model. Int J Mech Sci 28, 83–96

    Article  MATH  Google Scholar 

  11. B. Tabarrok, AN Sinclair, M Farshad, H Yi 1988. On the dynamics of spatially curved and twisted rods - a finite element formulation. J Sound Vib 123, 315–326

    Article  Google Scholar 

  12. P. Lancaster, M. Tismenetsky 1985. The theory of matrices. Academic Press, London

    MATH  Google Scholar 

  13. RA Frazer, WJ Duncan, AR Collar 1947. Elementary matrices, Cambridge, New York

    Google Scholar 

  14. AYT Leung 1990. Perturbed general eigensolutions. Commun Appi Num Meth 6,401–409

    Article  MATH  Google Scholar 

  15. VZ Vlasov 1959. Thin-walled elastic beams. Moscow

    Google Scholar 

  16. WH Wittrick, FW Williams 1970. A general algorithm for computing natural frequencies of elastic structures. Q J Mech Appl Math 24, 263–284

    Article  MathSciNet  Google Scholar 

  17. PO Friberg 1985. Beam element matrices derived from Vlasov’s theory of open thin-walled elastic beams. Int J Num Meth Engng 21, 1205–1228

    Article  MATH  MathSciNet  Google Scholar 

  18. KL Wardle 1965. Differential geometry. Routledge and Kegan Paul, London

    MATH  Google Scholar 

  19. WH Wittrick 1966. On elastic wave propagation in helical springs. Int J Mech Sci 8, 25–47

    Article  Google Scholar 

  20. YB Yang, SR Kuo 1986. Static stability of curved thin-walled beams. J Engng Mech 112, 821–841

    Article  Google Scholar 

  21. HW Guggenheimer 1977. Differential geometry. Dover, New York, pp 238–239

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag London Limited

About this chapter

Cite this chapter

Leung, A.Y.T. (1993). General Formulation. In: Dynamic Stiffness and Substructures. Springer, London. https://doi.org/10.1007/978-1-4471-2026-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2026-1_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2028-5

  • Online ISBN: 978-1-4471-2026-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics