Skip to main content

Abstract

Finite elements are related to continuous elements by means of Simpson’s hypothesis (Sect. 2.8). If the non-essential coordinates (slaves) are eliminated by means of dynamic substructure methods, dynamic stiffnesses result. We shall extend the formulation of Chap. 2 to include follower forces, parametrically excited axial forces, in-plane moments and response analysis. A general formulation will be given in Chap. 5 where curved members will be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W Bolotin 1963. Nonconservative problems of the theory of elastic stability. Pergamon Press, London

    MATH  Google Scholar 

  2. CJF Ridders 1985. Accurate computation of F’(x) and F ″(x) In: Software for engineering problems (ed. RA Adey), pp. 83–84. CML Publications

    Google Scholar 

  3. WP Howson, JR Banerjee, FW Williams 1983. Concise equations and program for exact eigensolutions of plane frames including member shear. Engng Soft 3, 443–452

    Google Scholar 

  4. D Pearson, WH Wittrick 1986. An exact solution for the vibration of helical springs using a Bernoulli-Euler model. Int J Mech Sci 28, 83–96

    Article  MATH  Google Scholar 

  5. J Henrych 1981. The Dynamics of Arches and Frames. Elsevier, Amsterdam

    MATH  Google Scholar 

  6. AYT Leung 1978. An accurate method of dynamic condensation in structural analysis. Int J Num Meth Engng 12, 1705–1716

    Article  MATH  Google Scholar 

  7. AYT Leung 1979. An accurate method of dynamic substructing with simplified computation. Int J Num Meth Engng 14, 1241–1256

    Article  MATH  Google Scholar 

  8. VV Bolotin 1964. The dynamic stability of elastic systems. Holden-Day, San Francisco

    MATH  Google Scholar 

  9. BAH Abbas, J Thomas 1978. Dynamic stability of Timoshenko beams resting on an elastic foundation. J Sound Vib 60, 33–44

    Article  MATH  Google Scholar 

  10. BAH Abbas 1986. Dynamic stability of a rotating Timoshenko beam with a flexible root. J Sound Vib 108, 25–32

    Article  Google Scholar 

  11. JR Banerjee, FW Williams 1985. Exact Bernoulli-Euler dynamic stiffness matrix for a range of tapered beams. Int J Num Meth Engng 21, 2289–2302

    Article  MATH  Google Scholar 

  12. RA Horn, CA Johnson 1985. Matrix analysis. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  13. B Parlett 1980. The symmetric eigenvalue problem. Prentice-Hall, Englewood Cliffs, NJ

    MATH  Google Scholar 

  14. AH Chilver (ed.) 1967. Thin-walled structures. Chatto and Windus, London

    Google Scholar 

  15. K Huseyin 1989. The convexity of the stability boundary of symmetric structural systems. Acta Mech 8, 205–211

    Article  Google Scholar 

  16. WF Chen, T Atsuta, 1977. Theory of beam-columns, vol 2. McGraw-Hill, New York, p 87

    Google Scholar 

  17. V Kolousek 1973. Dynamics in engineering structures. Butterworth, London

    MATH  Google Scholar 

  18. DC Johnson, RED Bishop 1960. The mechanics of vibrations. Cambridge University Press, Cambridge

    Google Scholar 

  19. DL Woodcock 1963. On the interpretation of the vector plots of forced vibrations of a linear system with viscous damping. Aero Q 14,45–62

    Google Scholar 

  20. DE Newland 1987. On the modal analysis of nonconservative linear systems. J Sound Vib 112,69–96

    Article  Google Scholar 

  21. I Fawzy, RED Bishop 1976. On the dynamics of linear non-conservative systems. Proc R Soc Lond A352, 25–40

    MathSciNet  Google Scholar 

  22. IFA Wahed, RED Bishop 1976. On the equations governing the free and forced vibrations of general nonconservative systems. J Mech Engng Sci 18, 6–10

    Article  Google Scholar 

  23. RA Frazer, WJ Duncan, AR Collar 1947. Elementary matrices. Cambridge University Press, Cambridge

    Google Scholar 

  24. JH Wilkinson 1965. The algebraic eigenvalue problem. Clarendon Press, Oxford

    MATH  Google Scholar 

  25. R Lunden, B. Akesson 1983. Damped second-order Rayleigh-Timoshenko beam vibration in space: an exact complex dynamic member stiffness matrix. Int J Num Meth Engng 19,431–449

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag London Limited

About this chapter

Cite this chapter

Leung, A.Y.T. (1993). Dynamic Stiffness. In: Dynamic Stiffness and Substructures. Springer, London. https://doi.org/10.1007/978-1-4471-2026-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2026-1_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2028-5

  • Online ISBN: 978-1-4471-2026-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics