Dynamic Substructures

  • Andrew Y. T. Leung


Regardless of their simplicity, all structures have an infinite number of degrees of freedom (d.o.f.) when subjected to dynamic loading. One of the main objectives in selecting a mathematical model is to reduce the infinite d.o.f. system to a model with a limited number of d.o.f. which capture the significant physical behaviour of the system.


Natural Mode Dynamic Stiffness Partial Mode Inverse Iteration Ritz Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    RED Bishop, DC Johnson 1960. The mechanics of vibration. Cambridge University PressMATHGoogle Scholar
  2. 2.
    WT Thomson 1972. Theory of vibration with applications. Prentice-Hall, Englewood Cliffs, NJGoogle Scholar
  3. 3.
    GB Warburtion 1976. The dynamical behaviour of structure, 2nd edn. Pergamon, OxfordGoogle Scholar
  4. 4.
    YT Leung 1978. An accurate method of dynamic condensation in structural vibration analysis. Int J Num Meth Engng 12, 1705CrossRefMATHGoogle Scholar
  5. 5.
    R Guyan 1975. Reduction of stiffness and mass matrices. AIAA J 3, 380Google Scholar
  6. 6.
    BM Irons 1965. Structural eigenvalue problem: elimination of unwanted variables. AIAA J 3, 961 - 962Google Scholar
  7. 7.
    T Bamford et al 1971. Dynamic analysis of large structural system. In: Proc ASME synthesis of vibrating systems, Washington, DCGoogle Scholar
  8. 8.
    RD Henshell, JH Ong 1975. Automatic masters for eigenvalue economization. Earthquake Engng Struct Dyn 3, 375–383CrossRefGoogle Scholar
  9. 9.
    AYT Leung 1979. An accurate method of dynamic substructuring with simplified computation. Int J Num Meth Engng 14, 1241–1256CrossRefMATHGoogle Scholar
  10. 10.
    M Paz 1984. Dynamic condensation. Am Inst Aeronaut J 22, 724–726Google Scholar
  11. 11.
    A Simpson 1980. The Kron methodology and practical algorithm for eigenvalue, sensitivity and response analysis of large scale structural systems. Aeronaut J 84, 417–433Google Scholar
  12. 12.
    WC Hurty 1969. Dynamic analysis by dynamic partitioning, AIAA J 7, 1152–1154CrossRefGoogle Scholar
  13. 13.
    RR Craig, MCC Bampton 1968. Coupling of structures for dynamic analysis. AIAA J 6, 1313–1319CrossRefMATHGoogle Scholar
  14. 14.
    DN Herting et al 1977. Development of an automated mullet-stage modal synthesis system for NASTRAN. In: 6th NASTRAN user’s colloquium, NASA CP 2018Google Scholar
  15. 15.
    RL Goldman 1969. Vibration analysis by dynamic partitioning. AIAA J 7, 1152–1154CrossRefMATHGoogle Scholar
  16. 16.
    SN Hou 1969. Review of modal synthesis techniques and a new approach. Shock Vib Bull 40(4), 25–39Google Scholar
  17. 17.
    WA Benfield, RF Hruda 1971. Vibration analysis of structures by component mode substitution. AIAA J 9, 1255–1261CrossRefMATHGoogle Scholar
  18. 18.
    TL Wilson 1977. A NASTRAN DMAP alter for the coupling of modal and physical coordinates substructures. In: 6th NASTRAN user’s colloquium, NASA CP 2018Google Scholar
  19. 19.
    EL Wilson, EP Bayo 1986. Use of 4 special Ritz vectors in dynamic substructure analysis. Am Soc Civ Engrs J Struct Engng 112, 1944–1954Google Scholar
  20. 20.
    X Lu, Y Chen, J Chen 1986. Dynamic substructures analysis using Lanczos vectors. In: First world congress in computational mechanics, Austin, TexasGoogle Scholar
  21. 21.
    GH Sotiropoulos 1984. Comment on the substructure synthesis methods. J Sound Vib 98, 150–153CrossRefGoogle Scholar
  22. 22.
    AYT Leung 1988. A simple dynamic substructure method. Earthquake Engng Struct Dyn 16, 827–837CrossRefGoogle Scholar
  23. 23.
    AYT Leung 1988. Damped dynamic substructures. Int J Num Meth Engng 26, 2355–2365CrossRefMATHGoogle Scholar
  24. 24.
    TK Hasselman 1976. Modal coupling in lightly damped structures. AIAA J 14, 1627–1628CrossRefGoogle Scholar
  25. 25.
    TK Hasselman 1976. Damping synthesis from substructures test. AIAA J 14, 1409–1418CrossRefGoogle Scholar
  26. 26.
    AL Hale 1984. Substructure synthesis and its iterative improvement for large non-conservative vibrator systems. AIAA J 22, 265–272CrossRefMATHGoogle Scholar
  27. 27.
    AL Hale, LA Bergman 1985. The dynamic synthesis of general non-conservative structures from separately identified substructure models. J Sound Vib 98,431–446CrossRefMATHGoogle Scholar
  28. 28.
    AYT Leung 1990. Non-conservative dynamic substructures. Dyn Stab Syst 5,45–47CrossRefGoogle Scholar
  29. 29.
    RR Craig 1977. Methods of component mode synthesis. Shock Vib Dig 9, 3–10CrossRefGoogle Scholar
  30. 30.
    L Meirovitch, AL Hale 1981. On the substructure synthesis method. AIAA J 19,940–947CrossRefGoogle Scholar
  31. 31.
    TH Richards, AYT Leung 1977. An accurate method in structural vibrating analysis. J Sound Vib 55, 363–376CrossRefMATHGoogle Scholar
  32. 32.
    WH Wittrick, FW Williams 1971. A general algorithm for computing natural frequencies of elastic structures. Q J Mech Appl Math 24, 263–284CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    G Peters, JH Wilkinson 1971. Ax = λBx and the general eigenvalue problems. SIAM J Num Anal 7, 479CrossRefMathSciNetGoogle Scholar
  34. 34.
    KJ Bathe, EL Wilson 1972. Large eigenvalue problems in dynamic analysis. ASCE Proc. Paper 9433Google Scholar
  35. 35.
    T Hopper, FW Williams 1977. Mode finding in nonlinear eigenvalue calculations. J Struct Mech 5, 255–278CrossRefGoogle Scholar
  36. 36.
    AL Hale, L Meirovitch 1982. Procedure for improving substructures representation in dynamic synthesis. J Sound Vib 84, 269–287MATHGoogle Scholar
  37. 37.
    WC Hurty 1960. Vibrations of structural systems by component mode synthesis. J Engng Mech Div ASCE 86 (EM4), 51–69Google Scholar
  38. 38.
    W Romberg 1955. Vereinfachte numerische integration. Der Kgl Norske Vid Selsk Forh 28, 30–36MATHMathSciNetGoogle Scholar
  39. 39.
    V. Kolousek 1973 Dynamics in engineering structures. Butterworth, LondonMATHGoogle Scholar
  40. 40.
    AS Deif 1982. Advanced matrix theory for scientists and engineers. Abacus Press, LondonMATHGoogle Scholar
  41. 41.
    AYT Leung 1979. Accelerated convergence of dynamic flexibility in series form. Engng Struct 1, 203–206CrossRefGoogle Scholar
  42. 42.
    AB Palazzolo, BP Wang, WD Pilkey 1982. A receptance formula for general second degrees square lambda matrices. Int J Num Meth Engng 18, 829–843CrossRefMATHMathSciNetGoogle Scholar
  43. 43.
    AYT Leung 1987. Inverse iteration for damped natural vibration. J Sound Vib 118,193–198CrossRefGoogle Scholar
  44. 44.
    T Wah, LR Calcote 1970. Structural analysis by finite difference calculus. Van Nostrand Reinhold, New YorkMATHGoogle Scholar
  45. 45.
    JP Ellington, H McCallion 1959. The free vibrations of grillages. Am Soc Mech Engrs J Appl Mech 26, 603–607MATHMathSciNetGoogle Scholar
  46. 46.
    C Sundararajan, DV Reddy 1975. Finite strip-difference calculus technique for plate vibration problems. Int J Solids Struct 11,425–435CrossRefMATHGoogle Scholar
  47. 47.
    PH Denke, GR Eide, J Pickard 1975. Matrix difference equations analysis of vibrating periodic structures. Am Inst Aeronaut Astronaut J 13,160–166Google Scholar
  48. 48.
    YK Lin, TJ McDaniel 1969. Dynamics of beam-type periodic structures. Am Soc Mech Engrs, J Engng Indust 91, 1133–1141Google Scholar
  49. 49.
    L Meirovitch, RC Engels 1977. Response of periodic structures by Z transform method. Am Inst Aeronaut Astronaut J 15,167–174MATHMathSciNetGoogle Scholar
  50. 50.
    RC Engels, L Meirovitch 1978. Response of periodic structures by modal analysis. J Sound Vib 56, 481–493CrossRefMATHGoogle Scholar
  51. 51.
    DJ Mead 1973. A general theory of harmonic wave propagation in linear periodic systems with multiple coupling. J Sound Vib 27, 235–260CrossRefMATHGoogle Scholar
  52. 52.
    JE Walz, RE Fulton, NJ Cyrus, RT Eppink 1970. Accuracy of finite element approximations to structural problems. NASA TN D-5728Google Scholar
  53. 53.
    A A Liepins 1978. Rod and beam finite element matrices and their accuracy. Am Inst Aeronaut Astronaut J 16, 531–534MATHGoogle Scholar
  54. 54.
    RH MacNeal 1972. The NASTRAN theoretical manual. NASA SP-221 (01)Google Scholar
  55. 55.
    JS Przemieniecki 1968. Theory of matrix structural analysis. McGraw-Hill. New YorkMATHGoogle Scholar
  56. 56.
    J Casti, R Kalaba 1973. Imbedding methods in applied mathematics. Addison-Wesley, Palo Alto, CAMATHGoogle Scholar
  57. 57.
    A Simpson 1974. Scanning Kron’s determinant. Q J Mech Appl Math 27, 27–43CrossRefMATHMathSciNetGoogle Scholar
  58. 58.
    YT Leung 1980. Accelerated converging methods in structural response analysis. Presented at the conference on advanced structural dynamics, University of SouthamptonGoogle Scholar

Copyright information

© Springer-Verlag London Limited 1993

Authors and Affiliations

  • Andrew Y. T. Leung
    • 1
  1. 1.Department of Civil and Structural EngineeringUniversity of Hong KongHong KongChina

Personalised recommendations