Skip to main content

Flow Cytometric Analysis, Using Rhodamine 123, of Micrococcus luteus at Low Growth Rate in Chemostat Culture

  • Chapter

Abstract

In microbiology it is often necessary to determine the number of viable cells in a sample or culture of interest. This is usually achieved by plating out the sample (diluted as required) on to an agar plate (Postgate 1969; Hattori 1988). There are several problems associated with this technique, the greatest of which is the length of time required to obtain the results. For some slowly growing organisms (e.g. Mycobacteria) it may take in excess of a week to determine how many cells were “viable” in the original sample, and even when the sample contains fast-growing organisms and the plates are incubated under optimal growth conditions a minimum of overnight growth is usually required before the resulting colonies can be counted. For some clinical specimens even an overnight incubation may be too long to be of use and consequently many alternatives to plate counts have been proposed in order to decrease the time required to determine numbers of viable cells (Harris and Kell 1985).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Back JP, Kroll RG (1991) The differential fluorescence of bacteria stained with acridine orange, and the effects of heat. J Appl Bacteriol 71:51–58

    PubMed  CAS  Google Scholar 

  • Boye E, Løbner-Olesen A (1991) Bacterial growth control studied by flow cytometry. Res Microbiol 142:131–135

    Article  PubMed  CAS  Google Scholar 

  • Boye E, Steen HB, Skarstad K (1983) Flow cytometry of bacteria: a promising tool in experimental and clinical microbiology. J Gen Microbiol 129:973–980

    PubMed  CAS  Google Scholar 

  • Chen LB (1988) Mitochondrial membrane potential in living cells. Annu Rev Cell Biol 4: 155–181

    Article  PubMed  CAS  Google Scholar 

  • Chen LB, Summerhayes IC, Johnson LV, Walsh ML, Bernal SD, Lampidis TJ (1982) Probing mitochondria in living cells with rhodamine 123. Cold Spring Harbor Symp Quant Biol 46:141–155

    Article  PubMed  Google Scholar 

  • Darzynkiewicz Z, Staiano-Coico L, Melamed MR (1981) Increased mitochondrial uptake of Rhodamine 123 during lymphocyte stimulation. Proc Natl Acad Sci USA 78:2383–2387

    Article  PubMed  CAS  Google Scholar 

  • Davey CL, Dixon NM, Kell DB (1990) FLOWTOVP: A spreadsheet method for linearizing flow cytometric light-scattering data used in cell sizing. Binary 2:119–125

    Google Scholar 

  • Dean PN (1990) Data processing. In: Melamed MR, Lindmo T, Mendelsohn ML (eds) Flow cytometry and sorting, 2nd edn. Wiley-Liss, New York

    Google Scholar 

  • Grogan WM, Collins JM (1990) Guide to flow cytometry methods. Marcel Decker, New York Harris CM, Kell DB (1985) The estimation of microbial biomass. Biosensors 1:17–84

    Google Scholar 

  • Hattori T (1988) The viable count: quantitative and environmental aspects. Springer, Berlin

    Google Scholar 

  • Iwagaki H, Fuchimoto S, Miyake M, Oirta K (1990) Increased mitochondrial uptake of rhodamine 123 during interferon-gamma stimulation in Molt 16 cells. Lymphokine Res 9: 365–369

    PubMed  CAS  Google Scholar 

  • Johnson LV, Walsh ML, Chen LB (1980) Localization of mitochondria in living cells with rhodamine 123. Proc Natl Acad Sci USA 77:990–994

    Article  PubMed  CAS  Google Scholar 

  • Johnson LV, Walsh ML, Bockus BJ, Chen LB (1981) Monitoring of relative mitochondrial membrane potential in living cells by fluorescence microscopy. J Cell Biol 88:526–535

    Article  PubMed  CAS  Google Scholar 

  • Jones RP (1987) Measures of yeast death and deactivation and their meaning. Part 1. Process Biochem 22:118–128

    Google Scholar 

  • Kaprelyants AS, Kell DB (1992) Rapid assessment of bacterial viability and vitality using rhodamine 123 and flow cytometry. J Appl Bacteriol 72:410–422

    Article  CAS  Google Scholar 

  • Kell DB, Ryder HM, Kaprelyants AS, Westerhoff HV (1991) Quantifying heterogeneity: flow cytometry of bacterial cultures. Ant Van Leeuw 60:145–158

    Article  CAS  Google Scholar 

  • Lizard G, Chardonnet Y, Chignol MC, Thivolet J (1990) Evaluation of mitochondrial content and activity with nonyl-acridine orange and rhodamine 123: flow cytometric analysis and comparison with quantitative morphometry. Cytotechnology 3:179–188

    Article  PubMed  CAS  Google Scholar 

  • McFeters GA, Singh A, Byun S, Callis PR, Williams S (1991) Acridine orange staining as an index of physiological activity in Escherichia coli. J Microbiol Meth 13:87–97

    Article  CAS  Google Scholar 

  • Murphy RF, Chused TM (1984) A proposal for a flow cytometric data file standard. Cytometry 5:553–555

    Article  PubMed  CAS  Google Scholar 

  • Pollack A, Ciancio G (1990) Cell cycle phase-specific analysis of cell viability using Hoechst 33342 and propidium iodide after ethanol preservation. In: Darzynkiewicz Z, Crissman HA (eds) Flow cytometry. Academic Press, San Diego

    Google Scholar 

  • Postgate JR (1969) Viable counts and viability. Meth Microbiol 1:611–628

    Article  Google Scholar 

  • Postgate JR (1976) Death in microbes and macrobes. In: Gray TRG, Postgate JR (eds) The survival of vegetative microbes. Cambridge University Press, Cambridge, pp 1–19

    Google Scholar 

  • Roszak DB, Colwell RR (1987) Survival strategies of bacteria in the natural environment. Microbiol Rev 51:365–379

    PubMed  CAS  Google Scholar 

  • Shapiro HM (1988) Practical flow cytometry, 2nd edn. Alan R Liss, New York

    Google Scholar 

  • Steen HB, Skarstad K, Boye E (1990) DNA measurements of bacteria. In: Darzynkiewicz Z, Crissman HA (eds) Flow cytometry. Academic Press, London

    Google Scholar 

  • Stoicheva NG, Davey CL, Markx GH, Kell DB (1989) Dielectric spectroscopy: a rapid method for the determination of solvent biocompatibility during biotransformations. Biocatalysis 2:245–255

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag London

About this chapter

Cite this chapter

Davey, H.M., Kaprelyants, A.S., Kell, D.B. (1993). Flow Cytometric Analysis, Using Rhodamine 123, of Micrococcus luteus at Low Growth Rate in Chemostat Culture. In: Lloyd, D. (eds) Flow Cytometry in Microbiology. Springer, London. https://doi.org/10.1007/978-1-4471-2017-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2017-9_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2019-3

  • Online ISBN: 978-1-4471-2017-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics