Skip to main content

Uses of Membrane Potential Sensitive Dyes with Bacteria

  • Chapter
Flow Cytometry in Microbiology

Abstract

An important property of all biological membranes is that they are selectively permeable to a variety of cations and anions (including the principal cellular ions H+, Na+, K+ and Cl-), so that the different ions tend to move down their concentration gradients through the membrane at different rates. These two characteristics, selective permeability and ionic concentration gradients, lead to a difference in electric potential between the inside and the outside of a cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed S, Booth IR (1981) Quantitative measurements of the proton-motive force and its relation to steady state lactose accumulation in Escherichia coli .Biochem J 200:573–581

    PubMed  CAS  Google Scholar 

  • Bakker EP (1982) Membrane potential in a potassium transport-negative mutant of Escherichia coli K-12. Biochim Biophys Acta 681:474–483

    Article  PubMed  CAS  Google Scholar 

  • Bendall MJ, Ebrahim S, Finch RG, Slack RCB, Towner KJ (1986) The effect of an antibiotic policy on bacterial resistance in patients in geriatric wards. J Med 60:849–854

    CAS  Google Scholar 

  • Booth JR, Mitchell WJ, Hamilton WA (1979) Quantitative analysis of proton-linked transport systems. Biochem J 182:687–696

    PubMed  CAS  Google Scholar 

  • Eddy A (1989) Use of carbocyanine dyes to assay membrane potential of mouse ascites tumour cells. Meth Enzymol 172:95–101

    Article  PubMed  CAS  Google Scholar 

  • Eriok BJS, Webster DA (1990) Respiratory-driven Na+ electrical potential in the bacterium Vitreoscilla. Biochemistry 29:4734–4739

    Article  Google Scholar 

  • Hargittai PT, Youmans SJ, Lieberman EM (1991) Determination of the membrane potential of cultured mammalian Schwann cells and its sensitivity to potassium using a thiocarbocyanine fluorescent dye. Glia 4:611–616

    Article  PubMed  CAS  Google Scholar 

  • Kamo N, Muratsuga M, Hongoh R, Kobatake Y (1979) Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J Membr Biol 49:105–121

    Article  PubMed  CAS  Google Scholar 

  • Kaprelyants AS, Kell DB (1992) Rapid assessment of bacterial viability and vitality using Rhodamine 123 and flow cytometry. J Appl Bacteriol 72:410–422

    Article  CAS  Google Scholar 

  • Kessel D, Beck WT, Kukuruga D, Schulz V (1991) Characterization of multidrug resistance by fluorescent dyes. Cancer Res 51:4665–4670

    PubMed  CAS  Google Scholar 

  • Klugman KP, Koornhof HJ (1988) Bacteremic pneumonia caused by penicillin-resistant pneumococci. N Engl J Med 318:123–124

    Article  PubMed  CAS  Google Scholar 

  • Lambert HP (1988) Clinical impact of drug resistance. J Hosp Inf 2 (Suppl A): 135–141

    Article  Google Scholar 

  • Lolkema JS, Hellingwerf KJ, Konings WN (1982) The effect of “probe binding” on the quantitative determination of the proton-motive force in bacteria. Biochim Biophys Acta 681:85–94

    Article  CAS  Google Scholar 

  • Matsuyama T (1984) Staining of living bacteria with rhodamine 123. FEMS Microbiol Lett 21:153–157

    Article  CAS  Google Scholar 

  • Muratsuga M, Kamo N, Kurihara K, Kobatake Y (1977) Selective electrode for diebenzyl diemethyl ammonium cation as indicator of the membrane potential in biological systems. Biochim Biophys Acta 464:613–619

    Article  Google Scholar 

  • Oyama Y, Chikahisa L, Tomiyoshi F, Hayashi II (1991) Cytotoxic action of triphenyltin on mouse thymocytes: a flow-cytometric study using fluorescent dyes for membrane potential and intracellular Ca2+. Jpn J Pharmacol 57:419–424

    Article  PubMed  CAS  Google Scholar 

  • Pallares R, Gudiol F, Linares J et al. (1987) Risk factors and response to antibiotic therapy in adults with bacteremic pneumonia caused by penicillin-resistant pneumococci. N Engl J Med 317:18–22

    Article  PubMed  CAS  Google Scholar 

  • Pena A, Uribe S, Pardo JP, Barbolla M (1984) The use of a cyanine dye in measuring membrane potential in yeast. Arch Biochem Biophys 231:217–225

    Article  PubMed  CAS  Google Scholar 

  • Petit PX, O’Connor JE, Grunwald D, Brown SC (1990) Analysis of the membrane potential of rat and mouse liver mitochondria by flow cytometry and possible applications. Eur J Biochem 194:389–397

    Article  PubMed  CAS  Google Scholar 

  • Philo R, Eddy AA (1978) The membrane potential of mouse ascites - tumour cells studied with the fluorescent probe 3,3-dipropyloxadicarbocyanine. Amplitude of the depolarization caused by amino acids. Biochem J 174:801–810

    PubMed  CAS  Google Scholar 

  • Piddock LJV (1990) Techniques used for the determination of antimicrobial resistance and sensitivity in bacteria. J Appl Bacteriol 68:307–318

    Article  PubMed  CAS  Google Scholar 

  • Ronot X, Benel L, Adolphe M, Mounlou J (1986) Mitochondria analysis in living cells: the use of Rhodamine 123 and flow cytometry. Biol Cell 57:1–8

    Article  PubMed  CAS  Google Scholar 

  • Schuldiner S, Kaback HR (1975) Membrane potential and active transport in membrane vesicles from Escherichia coli. Biochemistry 14:5451–5416

    Article  PubMed  CAS  Google Scholar 

  • Shalit I, Berger SA, Gorea A, Frimerman H (1989) Widespread quinolone resistance among methicillin-resistant Staphylococcus aureus: isolates in a general hospital. Antimicrob Agents Chemother 33:593–594

    Article  PubMed  CAS  Google Scholar 

  • Shinbo T, Kamo N, Kurihara K, Kobatake (1978) A PVC based electrode sensitive to DDA as a device for monitoring the membrane potential in biological systems. Arch Biochem Biophys 187:414–419

    Article  PubMed  CAS  Google Scholar 

  • Shinomiya N, Tsuru S, Katsura Y, Sekiguchi I, Suzuki M, Nomoto K (1992) Increased mitochondrial uptake of Rhodamine 123 by CDDP treatment. Exp Cell Res 198:159–163

    Article  PubMed  CAS  Google Scholar 

  • Sims J, Waggoner AS, Wang C, Hoffman JF (1974) Studies of the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidylcholine vesicles. Biochemistry 13:3315–3329

    Article  PubMed  CAS  Google Scholar 

  • Skowronek P, Krummeck G, Haferkump O, Rodel G (1990) Flow cytometry as a tool to discriminate respiratory competent and respiratory deficient yeast cells. Curr Genet 18: 265–267

    Article  PubMed  CAS  Google Scholar 

  • Stokes EJ, Ridgeway GL (1987) Clinical microbiology, 6th edn. Edward Arnold, London

    Google Scholar 

  • Zaritsky A, Kihara M, MacNab RM (1981) Measurement of membrane potential in Bacillus subtilis: a comparison of lipophilic cations, rubidium ion, and a cyanine dye as probes. J Membr Biol 63:215–231

    Article  PubMed  CAS  Google Scholar 

  • Zilberstein D, Schudliner S, Padan E (1979) Proton electrochemical gradient in Escherichia coli cells and its relation to active transport of lactose. Biochemistry 18:669–673

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag London

About this chapter

Cite this chapter

Mason, D., Allman, R., Lloyd, D. (1993). Uses of Membrane Potential Sensitive Dyes with Bacteria. In: Lloyd, D. (eds) Flow Cytometry in Microbiology. Springer, London. https://doi.org/10.1007/978-1-4471-2017-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2017-9_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2019-3

  • Online ISBN: 978-1-4471-2017-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics