Skip to main content

Flow Cytometric Analysis of Heterogeneous Bacterial Populations

  • Chapter
Flow Cytometry in Microbiology

Abstract

There is currently much interest in developing instrumental techniques for rapid microbiological analyses, in particular bacterial identification. This stems largely from the limitations of the classical identification procedures that are still the main approach to identifying bacteria today.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander MS, Khan MS, Dow CS (1981) Rapid screening for bacteriuria using a particle counter, pulse height analyser, and computer. J Clin Pathol 34:194–198

    Article  PubMed  CAS  Google Scholar 

  • Allman R, Hann AC, Phillips AP, Martin KL, Lloyd D (1990) Growth of Azotobacter vinelandii with correlation of coulter cell size, flow cytometric parameters, and ultrastructure. Cytometry 11:822–831

    Article  PubMed  CAS  Google Scholar 

  • Arndt-Jovin DJ, Jovin TM (1974) Computer controlled multiparameter analysis and sorting of cells and particles. J Histochem Cytochem 22:622–625

    Article  PubMed  CAS  Google Scholar 

  • Bekkum DWU, Noord MJV, Maat A, Dicke KA (1971) Attempts at identification of haemopoietic stem cells in mouse. Blood 38:547–558

    PubMed  Google Scholar 

  • Boye E, Løbner-Olesen A (1990) Flow cytometry: illuminating microbiology. New Biologist 2:119–125

    PubMed  CAS  Google Scholar 

  • Carey PR (1982) Biological applications of raman and resonance raman spectroscopy. Academic Press, New York

    Google Scholar 

  • Cowan ST, Steel KJ (1965) Manual for the identification of medical bacteria. Cambridge University Press, Cambridge

    Google Scholar 

  • Coulter WH (1956) High speed automatic blood cell counter and cell size analyser. Proc Natl Electronics Conf 12:1034

    Google Scholar 

  • Cross DA, Latimer P (1972) Angular dependence of scattering from Escherichia coli cells Appl Optics 11:1225–1228

    Article  CAS  Google Scholar 

  • Donnelly CW, Baigent GJ (1986) Method for flow cytometric detection of Listeria monocytogenes in milk. Appl Environ Microbiol 52:689–695

    PubMed  CAS  Google Scholar 

  • Dow CS, France AD, Khan MS, Johnson T (1979) Particle size distribution analysis for the rapid detection of microbial infection in urine. J Clin Pathol 32:386–389

    Article  PubMed  CAS  Google Scholar 

  • Drucker DB (1981) Microbiological applications of gas chromatography. Cambridge University Press, Cambridge

    Google Scholar 

  • Ferry RM, Farr LE, Hartman MG (1949) The preparation and measurement of the concentration of dilute bacterial aerosols. Chem Rev 44:389–395

    Article  PubMed  CAS  Google Scholar 

  • Fox A, Morgan SL (1985) The chemotaxonomic characterisation of microorganisms by capillary gas chromatography and gas chromatography mass spectrometry. In: Nelson WH (ed) Instrumental methods for rapid microbiological analysis. VCH Inc., USA, pp 135–162

    Google Scholar 

  • French GL, Gutteridge CS, Phillips I (1980) Pyrolysis gas chromatography of Pseudomonas and Acinetobacter species. J Appl Bacteriol 49:505–516

    Article  PubMed  CAS  Google Scholar 

  • Gutteridge CS, Norris JR (1979) The application of pyrolysis techniques to the identification of microorganisms. J Appl Bacteriol 47:5–43

    Article  PubMed  CAS  Google Scholar 

  • Hadley WK, Yajko DM (1985) Detection of microorganisms and their metabolism by measurements of electrical impedance. In: Nelson WH (ed) Instrumental methods for rapid microbiological analysis. VCH Inc., USA, pp 193–209

    Google Scholar 

  • Hartman KA, Thomas GJ (1985) The identification, interactions and structure of viruses by raman spectroscopy. In: Nelson WH (ed) Instrumental methods for rapid microbiological analysis. VCH Inc., USA, pp 91–134

    Google Scholar 

  • Howard RJ, Battye FL, Mitchell GF (1979) Plasmodium infected blood cells analysed and sorted by flow cytometry with deoxyribonucleic acid binding dye 33258 Hoechst. J Histochem Cytochem 27:803–813

    Article  PubMed  CAS  Google Scholar 

  • Ingram M, Cleary TJ, Price BJ, Price RL, Castro A (1982) Rapid detection of Legionella pneumophila by flow cytometry. Cytometry 3:134–137

    Article  PubMed  CAS  Google Scholar 

  • Irwin WJ (1982) Analytical pyrolysis: A comprehensive guide. Marcel Dekker, New York, pp 381–431

    Google Scholar 

  • Jacobberger JW, Horan PK, Hare JD (1983) Analysis of malaria parasite infected blood by flow cytometry. Cytometry 4:228–234

    Article  PubMed  CAS  Google Scholar 

  • Kamentsky LA, Melamed MR, Derman H (1965) Spectrophotometer: a new instrument for ultrarapid cell analysis. Science 150:630–631

    Article  PubMed  CAS  Google Scholar 

  • Kamentsky LA, Melamed MR (1967) Spectrophotometric cell sorter. Science 156:1364–1365

    Article  PubMed  CAS  Google Scholar 

  • Kerker M, Chew H, McNulthy PJ et al. (1979) Light scattering and fluorescence by small particles having internal structure J Histochem Cytochem 27:250–263

    Article  PubMed  CAS  Google Scholar 

  • Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497

    Article  PubMed  CAS  Google Scholar 

  • Langlois RG, Jensen RH (1979) Interactions between pairs of DNA specific fluorescent stains bound to mammalian cells. J Histochem Cytochem 27:72–78

    Article  PubMed  CAS  Google Scholar 

  • Leary JF, Todd P, Wood JCS, Jett JH (1979) Laser flow cytometric light scatter and fluorescence pulse width and pulse rise time sizing of mammalian cells. J Histochem Cytochem 27:315–320

    Article  PubMed  CAS  Google Scholar 

  • Loken MR, Sweet RG, Herzenberg LA (1976) Cell discrimination by multiangle light scattering. J Histochem Cytochem 24:284–291

    Article  PubMed  CAS  Google Scholar 

  • Mansour JD, Robson JA, Arndt GW, Schulte TM (1985) Detection of E. coli in blood using flow cytometry. Cytometry 6:186–190

    Article  PubMed  CAS  Google Scholar 

  • Meyer RA, Brunsting A (1975) Light scattering from nucleated biological cells. Biophys J 15:191–203

    Article  PubMed  CAS  Google Scholar 

  • Moldavan (1934) A photoelectric technique for the counting of microscopical cells. Science 80:188–189

    Article  PubMed  CAS  Google Scholar 

  • Morris CW, Boddy L, Allman R (1992) Identification of basidiomycete spores by neural network analysis of flow cytometry data. Mycological Res 96:697–701

    Article  Google Scholar 

  • Muldrow LL, Tyndall RL, Fliermans CB (1982) Application of flow cytometry to studies of pathogenic free living amoebae. Appl Environ Microbiol 44:1258–1269

    PubMed  CAS  Google Scholar 

  • Mullaney PE, Van Dilla MA, Coulter JR, Dean PN (1969) Cell sizing: a light scattering photometer for rapid volume determination. Rev Sci Instruments 40:1029–1032

    Article  CAS  Google Scholar 

  • Nelson WH (1985) Instrumental methods for rapid microbiological analysis. VCH Inc., USA

    Google Scholar 

  • Neufeld HA, Pace JG, Hutchinson RW (1985) Detection of microorganisms by bio- and chemiluminescence techniques. In: Nelson WH (ed) Instrumental methods for rapid microbiological analysis. VCH Inc., USA, pp 51–65

    Google Scholar 

  • Phillips AP, Martin KL (1983) Immunofluorescence analysis of Bacillus spores and vegetative cells by flow cytometry. Cytometry 4:124–129

    Article  Google Scholar 

  • Phillips AP, Martin KL (1985) Dual parameter scatter-flow immunofluorescence analysis of Bacillus spores. Cytometry 6:124–129

    Article  PubMed  CAS  Google Scholar 

  • Phillips AP, Martin KL (1988) Limitations of flow cytometry for the specific detection of bacteria in mixed populations. J Immunol Meth 106:109–117

    Article  CAS  Google Scholar 

  • Rossi TM, Warner IM (1985) Bacterial identification using fluorescence spectroscopy. In: Nelson WH (ed) Instrumental methods for rapid microbiological analysis. VCH Inc., USA, pp 1–50

    Google Scholar 

  • Salzman GC, Crowell JM, Martin JC et al. (1975) Cell classification by laser light scattering: Identification of unstained leukocytes. Acta Cytol 19:374–377

    PubMed  CAS  Google Scholar 

  • Salzman GC, Wilder ME, Jett JH (1979) Light scattering with stream-in-air flow systems. J Histochem Cytochem 27:264–267

    Article  PubMed  CAS  Google Scholar 

  • Sanders CA, Yajko DM, Hyun W et al. (1990) Determination of guanine plus cytosine content of bacterial DNA by dual laser flow cytometry. J Gen Microbiol 136:359–365

    Article  PubMed  CAS  Google Scholar 

  • Shapiro HM (1983) Multistation multiparameter flow cytometry: a critical review and rationale. Cytometry 3:227–243

    Article  PubMed  CAS  Google Scholar 

  • Shapiro HM (1988) Practical flow cytometry, 2nd edn. Liss-Wiley, New York, pp 297–298

    Google Scholar 

  • Shapiro HM (1990) Cell membrane potential analysis. In: Darzynkiewicz Z, Crissman HA (eds) Methods in cell biology, vol 33: Flow cytometry. Academic Press, London, pp 25–35

    Google Scholar 

  • Sharpless TK, Melamed MR (1976) Estimation of cell size from pulse shape in flow cytofluorometry. J Histochem Cytochem 24:257–264

    Article  PubMed  CAS  Google Scholar 

  • Sharpless TK, Traganos F, Darzynkiewicz Z, Melamed MR (1975) Flow cytometry: discrimination between single cells and cell aggregates by direct size measurements. Acta Cytol 19:577–581

    PubMed  CAS  Google Scholar 

  • Sharpless TK, Bartholdi M, Melamed MR (1977) Size and refractive index dependence of simple forward angle scattering measurements in a flow system using sharply focused illumination. J Histochem Cytochem 25:845–856

    Article  PubMed  CAS  Google Scholar 

  • Shelly DC, Quarles JM, Warner IM (1980a) Identification of fluorescent Pseudomonas species. Clin Chern 26:1127–1132

    PubMed  CAS  Google Scholar 

  • Shelly DC, Warner IM, Quarles JM (1980b) Multiparameter approach to the fingerprinting of fluorescent pseudomonads. Clin Chem 26:1419–1424

    PubMed  CAS  Google Scholar 

  • Simpson PK (1990) Artificial neural systems. Pergamon Press, Oxford

    Google Scholar 

  • Sinha MP (1985) Analysis of individual biological particles in air. In: Nelson WH (ed) Instrumental methods for rapid microbiological analysis. VCH Inc., USA, pp 165–189

    Google Scholar 

  • Sneath PHA (1957) The application of computers to taxonomy. J Gen Microbiol 17:201–226

    Article  PubMed  CAS  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Article  PubMed  CAS  Google Scholar 

  • Stack MV, Donohue HD, Tyler JE (1978) Discrimination between oral streptococci by pyrolysis gas liquid chromatography. Appl Environ Microbiol 35:45–50

    PubMed  CAS  Google Scholar 

  • Steen HB (1983) A microscope based flow cytophotometer. Histochem J 15: 147–150

    Article  PubMed  CAS  Google Scholar 

  • Steen HB, Boye E (1980) Bacterial growth studied by flow cytometry. Cytometry 1:32–36

    Article  PubMed  CAS  Google Scholar 

  • Steen HB, Boye E (1981) Escherichia coli growth studied by dual parameter flow cytophotometery. J Bacteriol 145:1091–1094

    PubMed  CAS  Google Scholar 

  • Steen HB, Lindmo T (1979) Flow cytometry: a high resolution instrument for everyone. Science 204:403–404

    Article  PubMed  CAS  Google Scholar 

  • Steen HB, Skarstad K, Boye E (1990) DNA measurements of bacteria. In: Darzynkiewicz Z, Crissman HA (eds) Methods in cell biology, vol. 33: Flow cytometry. Academic Press, London, pp 519–527

    Google Scholar 

  • Tu AT (1982) Raman spectroscopy in biology. Wiley, New York

    Google Scholar 

  • Tyndall RL, Hand RE, Mann RC, Evans C, Jernigan R (1985) Application of flow cytometry to detection and characterisation of Legionella spp. Appl Environ Microbiol 49:852–857

    PubMed  CAS  Google Scholar 

  • Van Dilla MA, Langlois RG, Pinkel D, Yajko D, Hadley WK (1983) Bacterial charactcrisation by flow cytometry. Science 220:620–622

    Article  PubMed  Google Scholar 

  • Visser JWM, Cram LS, Martin JC, Salzman GC. Price BJ (1978) Sorting of a murine granulocyte progenator cell by use of laser light scattering measurements. In: Lutz D (ed) Pulse cytophotometry, part 3. European Press, Ghent, pp 187–192

    Google Scholar 

  • Visser JWM, Engh GJ, Bekkum DW (1980) Light scattering properties of murine hacmopoietic cells. Blood Cells 6:391–407

    PubMed  CAS  Google Scholar 

  • Whaun JM, Rittershaus C, Ip SH (1983) Rapid identification and detection of parasitized human red cells by automated flow cytometry. Cytometry 4:117–122

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag London

About this chapter

Cite this chapter

Allman, R., Manchee, R., Lloyd, D. (1993). Flow Cytometric Analysis of Heterogeneous Bacterial Populations. In: Lloyd, D. (eds) Flow Cytometry in Microbiology. Springer, London. https://doi.org/10.1007/978-1-4471-2017-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2017-9_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2019-3

  • Online ISBN: 978-1-4471-2017-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics