Skip to main content

Flow Cytometry: A Technique Waiting for Microbiologists

  • Chapter
Flow Cytometry in Microbiology

Abstract

The world of microorganisms provides a playground both for those fascinated by the prospects of understanding the nature of life, and for those interested in solving everyday problems arising from microbial activities. Both fundamental studies and applied aspects of microbiology have become “illuminated” in recent years by the techniques of flow cytometry (Boye and Løbner-Olesen 1990). It is, however, somewhat disappointing, considering the truly remarkable demonstrations of the usefulness and power of these approaches, that only a rather slow adoption has ensued. The reasons for this are not hard to find, and do not in any way detract from the great potential of flow cytometry as amply illustrated by existing literature. Cost may become less of a constraint as suitable low-power lasers become available (Shapiro 1985). It is also worth remembering that a high-pressure mercury arc lamp can give results as good as (or better than) a 5 W argonion laser in many applications (Peters 1979).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agar DW, Bailey JE (1982) Cell cycle operation during batch growth of fission yeast populations. Cytometry 3:123

    Article  PubMed  CAS  Google Scholar 

  • Alderete JF, Kasmala L, Metcalfe E, Garza GE (1986) Phenotypic variation and diversity among Trichomonas vaginalis isolates and correlation of phenotype with trichomonal virulence determinants. Infect Immunol 53:285

    CAS  Google Scholar 

  • Allman R, Hann AC, Phillips AP, Martin KL, Lloyd D (1990) Growth of Azotobacter vinelandii with correlation of Counter cell size, flow cytometric parameters and ultrastructure. Cytometry 11:822–831

    Article  PubMed  CAS  Google Scholar 

  • Amy PS, Morita RY (1983) Starvation survival patterns of 16 freshly isolated open ocean bacteria. Appl Environ Microbiol 45:1109–1115

    PubMed  CAS  Google Scholar 

  • Arndt-Jovin DJ, Jovin TM (1974) Computer-controlled cell (particle) analyser and separator: use of light scattering. FEBS Lett 44:247

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ (1989) Cell signalling through cytoplasmic calcium oscillators. In: Goldbeter A (ed) Academic Press, London, pp. 449–460

    Google Scholar 

  • Bisset KA (1952) Bacteria. Livingstone, Edinburgh

    Google Scholar 

  • Boye E, Løbner-Olesen A (1990) Flow cytometry: illuminating microbiology. The New Biologist 2:119–125

    PubMed  CAS  Google Scholar 

  • Boye E, Løbner-Olesen A, Skarstad K (1988) Timing of chromosomal replication in Escherichia coli. Biochim Biophys Acta 951:359–364

    Article  PubMed  CAS  Google Scholar 

  • Chisholm SW, Olson RJ, Zettler ER, Goericke R, Waterbury JB, Welschmeyer NA (1988) A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature 334:340–343

    Article  Google Scholar 

  • Cooper S (1991) Bacterial growth and division. Academic Press, London

    Google Scholar 

  • Coulson PB, Tyndall R (1978) Quantitation by flow microfluorimetry of total cellular DNA in Acanthamoeba. J Histochem Cytochem 26:713–718

    Article  PubMed  CAS  Google Scholar 

  • Crissman H, Tobey RA (1974) Cell cycle analysis in 20 minutes. Science 184:1297–1298

    Article  PubMed  CAS  Google Scholar 

  • Das J, Busse HG (1991) Analysis of the dynamics of relaxation type oscillation in glycolysis of yeast extracts. Biophys J 60:369–379

    Article  PubMed  CAS  Google Scholar 

  • Dennis K, Sricnc F, Bailey JE (1983) Flow cytomctric analysis of plasmid hctcrogeneity in Escherichia coli populations.. Biotechnol Bioeng 25:2485–2489

    Article  PubMed  CAS  Google Scholar 

  • Dow CS, Whittenbury R, Carr NG (1983) The “shut down” or “growth precursor cell” - an adaptation for survival in a potentially hostile environment. Symp Soc Gen Microbiol 34:187–247, Cambridge University Press, Cambridge

    Google Scholar 

  • Edwards C, McCann RJ (1981) Differential effects of inhibitors on respiratory activity of synchronous cultures of Bacillus subtilis prepared by continuous-flow centrifugation. J Gen Microbiol 125:47–53

    CAS  Google Scholar 

  • Eisert WG, Ostertag R, Niemann EG (1975) Simple flow microphotometer for rapid cell population analysis. Rev Sci Instrum 46:1021

    Article  PubMed  CAS  Google Scholar 

  • Falchuk KH, Krishan A, Vallee BL (1975) DNA distribution in the cell cycle of Euglena gracilis. Cytofluorometry of zinc deficient cells. Biochemistry 14:3439

    Article  PubMed  CAS  Google Scholar 

  • Fazel-Madjlessi J, Bailey JE (1979) Analysis of fermentation process using flow microfluorimetry: single-parameter observations of batch bacterial growth. Biotech Bioeng 21:1995–2010

    Article  CAS  Google Scholar 

  • Ferry RM, Farr Jr LE, Hartman MG (1949) The preparation and measurement of the concentration of dilute bacterial aerosols. Chern Rev 44:389–395

    Article  CAS  Google Scholar 

  • Goldbeter A (1990) Rythmes et chaos dans les systemes biochimique et cellulaires. Masson, Paris

    Google Scholar 

  • Hayworth MF, Papo J (1989) Use of two-colour flow cytometry to assess killing of Giardia muris trophozoites by antibody and complement. Parasitology 99:199–203

    Article  Google Scholar 

  • Hercher M, Mueller W, Shapiro HM (1979) Detection and discrimination of individual viruses by flow cytometry. J Histochem Cytochem 27:350–352

    Article  PubMed  CAS  Google Scholar 

  • Hill EC, Genner C (1981) Avoidance of microbial infection and corrosion in slow-speed diesel engines by improved design of the crankcase oil system. Tribology Int 8:67–74

    Article  Google Scholar 

  • Hutter KJ, Eipel HE (1978) Flow cytometric determinations of cellular substances in algae, bacteria, moulds and yeasts. Anton van Leeuw 44:269

    Article  CAS  Google Scholar 

  • Hutter KJ, Eipel HE (1979) Microbial determination by flow cytometry. J Gen Microbiol 113:369–375

    Article  PubMed  CAS  Google Scholar 

  • Hutter KJ, Oldiges H (1980) Alterations of proliferating microorganisms by flow cytometric measurements after heavy metal intoxication. Ecotoxicol Environ Safety 4:57

    Article  PubMed  CAS  Google Scholar 

  • Hutter KJ, Goehde W, Emeis CC (1975a) Investigation about the synthesis of DNA, RNA and proteins of selected populations of microorganisms by cytophotometry and pulsecytophotometry. I. Methodical investigations about appropriate fluorescence-dyes and staining procedures. Chern Mikrobiol Technol Lebensum 4:29–32

    CAS  Google Scholar 

  • Hutter KJ, Otto F, Emeis CC (1975b) Investigations about the synthesis of DNA, RNA and proteins of selected populations of microorganisms by cytophotometry and pulsecytophotometry. II. Synthesis of DNA, RNA and proteins of yeast of the species Saccharomyces during the vegetative growth. Chern Mikrobiol Technol Lebensum 4:75–80

    CAS  Google Scholar 

  • Hutter KJ, Eipel HE, Hettwer H (1978) Rapid determination of the purity of yeast cultures by flow cytometry. European J Appl Microbiol Biotechnol 5:109–112

    Article  Google Scholar 

  • Jackson PR, Winkler DG, Kimzey SL, Fisher FM Jr (1977) Cytofluorograf detection of Plasmodium yoelii, Trypanosoma gambiense, and Trypanosoma equiperdum by laser excited fluorescence and stained rodent blood. J Parasitol 63:593–598

    Article  PubMed  CAS  Google Scholar 

  • Kamentsky LA, Melamed MR, Derman H (1965) Spectrophotometer: new instrument for ultrarapid cell analysis. Science 150:630–631

    Article  PubMed  CAS  Google Scholar 

  • Lewis DL, Gattie DK (1991) The ecology of quiescent microbes. Am Soc Microbiol 57:27–32

    Google Scholar 

  • Lloyd D (1992) Intracellular timekeeping: epigenetic oscillations reveal functions of an ultradian clock. In: Lloyd D, Rossi ER (eds) Ultradian rhythms in life processess: A fundamental inquiry into chronobiology, Springer, London, pp 5–21

    Chapter  Google Scholar 

  • Lloyd D, Stupfel M (1991) The occurrence and function of ultradian rhythms. Bioi Rev 66:275–299

    Article  CAS  Google Scholar 

  • Lloyd D, John L, Hamill M, Phillips C, Kader J, Edwards SW (1977) Continuous flow cell cycle fractionation of eukaryotic microorganisms. J Gen Microbiol 99:223–227

    Article  Google Scholar 

  • Lloyd D, Poole RK, Edwards SW (1982) The cell division cycle: temporal organization and control of cellular growth and reproduction. Academic Press, London

    Google Scholar 

  • Matin A (1992) Physiology, molecular biology and applications of the bacterial starvation response. J Appl Bacteriol Suppl 73:49S-57S

    Article  Google Scholar 

  • Mossel DAA, Corry JEL (1977) Detection and enumeration of sublethally injured pathogenic and index bacteria in foods and water processed for safety. Kult und Diff 19–34

    Google Scholar 

  • Novitsky JA, Morita RY (1976) Morphological characterization of small cells resulting from nutrient starvation of a psychotrophic marine vibrio. Appl Environ Microbiol 32:616–622

    Google Scholar 

  • Paau AS, Cowles JR, Oro J (1977) Flow-microfluorimetric analysis of Escherichia coli, Rhizobium melilotti, and Rhizobium japonicum at different stages of the growth cycle. Can J Microbiol 23:1165–1169

    Article  PubMed  CAS  Google Scholar 

  • Paget TA, Lloyd D (1990) Trichomonas vaginalis requires traces of oxygen and high concentrations of carbon dioxide for optimal growth. Mol Biochem Parasitol 41:65–72

    Article  PubMed  CAS  Google Scholar 

  • Peters DC (1979) A comparison of mercury arc lamp and laser illumination for flow cytometry. J Histochem Cytochem 27:241–245

    Article  PubMed  CAS  Google Scholar 

  • Phillips AP, Martin KL (1988) Limitations of flow cytometry for the specific detection of bacteria in mixed populations. J Immunol Meth 106: 109–117

    Article  CAS  Google Scholar 

  • Phillips AP, Martin KL, Capey AJ (1987) Direct and indirect immunofluorescence analysis of bacterial populations by flow cytometry. J Immunol Meth 101:219–228

    Article  CAS  Google Scholar 

  • Phillips CA, Lloyd D (1978) Continuous-flow size selection of Tetrahymena pyriformis ST: changes in volume, DNA, RNA and protein during synchronous growth. J Gen Microbiol 105:95–103

    Article  PubMed  CAS  Google Scholar 

  • Postgate JR, Hunter JR (1962) The survival of starved bacteria. J Gen Microbiol 29:233–263

    Article  PubMed  CAS  Google Scholar 

  • Postgate JR, Hunter JR (1964) Accelerated death of Aerobacter aerogenes starved in the presence of growth limiting substrates. J Gen Microbiol 34:459–473

    Article  PubMed  CAS  Google Scholar 

  • Postgate JR, Crumpton JE, Hunter JR (1961) The measurement of bacterial viabilities by slide culture. J Gen Microbiol 24:15–24

    Article  PubMed  CAS  Google Scholar 

  • Powell EO (1956) A rapid method for determining the proportion of viable bacteria in a culture. J Gen Microbiol 14:153–159

    Google Scholar 

  • Quesnel (1960) The behaviour of individual organisms in the lag phase and the development of small populations of Escherichia coli J Appl Bacteriol 23:99–105

    Article  Google Scholar 

  • Rollins DM, Colwell RR (1986) Viable but non-culturable stage of Campylobacter jejuni and its role in survival in the natural aquatic environment. Appl Environ Microbiol 52:531–538

    PubMed  CAS  Google Scholar 

  • Roszak DB, Colwell RR (1987) Metabolic activity of bacterial cells enumerated by direct viable count. Appl Environ Microbiol 53:2889–2983

    PubMed  CAS  Google Scholar 

  • Roszak DB, Grimes DJ, Colwell RR (1984) Viable but non-recoverable stage of Salmonella enteritidis in aquatic systems. Can J Microbiol 30:334–338

    Article  PubMed  CAS  Google Scholar 

  • Russell AD (1991) Injured bacteria: occurrence and possible significance. Lett Appl Microbiol 12:1–2

    Article  Google Scholar 

  • Scott RI, Gibson JF, Poole RK (1980) Adenosine triphosphatase activity and its sensitivity to Ruthenium Red oscillate during the cell cycle of Escherichia coli K12. J Gen Microbiol 120:183–198

    PubMed  CAS  Google Scholar 

  • Shapiro HM (1983) Multistation multiparameter flow cytometry: a critical review and rationale. Cytometry 3:227–243

    Article  PubMed  CAS  Google Scholar 

  • Shapiro HM (1985) The little laser that could: applications of low power lasers in clinical flow cytometry. Ann New York Acad Sci 468:18–27

    Article  Google Scholar 

  • Skarstad K, Boye E (1988) Perturbed chromosomal replication in recA mutants of Escherichia coli J Bacteriol 170:2549–2554

    PubMed  CAS  Google Scholar 

  • Skarstad K, Steen HB, Boye E (1983) Cell cycle parameters of slowly, growing E. coli B/r studied by flow cytometry. J Bacteriol 154:656–662

    PubMed  CAS  Google Scholar 

  • Skarstad K, Steen HB, Boye E (1985) DNA distributions of E. coli measured by flow cytometry and compared to theoretical computer simulations. J Bacteriol 163:661–668

    PubMed  CAS  Google Scholar 

  • Skarstad K, Boye E, Steen HB (1986) Timing of initiation of chromosome replication in individual Escherichia coli cells. EMBO J 5:1711–1717

    PubMed  CAS  Google Scholar 

  • Skarstad K, von Meyenburg K, Hansen FG, Boye E (1988) Coordination of chromosome replication initiation in Escherichia coli: effects of different dnaA alleles. J Bacteriol 170:852–858

    PubMed  CAS  Google Scholar 

  • Skarstad K, Løbner-OIesen A, Atlung T, von Meyenburg K, Boye E (1989) Initiation of DNA replication in Escherichia coli after overproduction of the DnaA protein. Mol Gen Genet 218:50–56

    Article  PubMed  CAS  Google Scholar 

  • Slater ML, Sharrow SO, Gart JJ (1977) Cell cycle of Saccharomyces cerevisiae in populations growing at different rates. Proc Natl Acad Sci USA 74:3850–3854

    Article  PubMed  CAS  Google Scholar 

  • Steen HB, Boye E (1980) Bacterial growth studied by flow cytometry. Cytometry 1:32–36

    Article  PubMed  CAS  Google Scholar 

  • Steen HB, Boye E (1981) Growth of Escherichia coli studied by dual parameter flow cytometry. J Bacteriol 145:1091–1094

    PubMed  CAS  Google Scholar 

  • Steen HB, Lindmo T (1979) Flow cytometry: a high resolution instrument for everyone. Science 204:403–404

    Article  PubMed  CAS  Google Scholar 

  • Steen HB, Boye E, Skarstad K, Bloom B, Godal T, Mustafa S (1982) Applications of flow cytometry on bacteria: cell cycle kinetics, drug effects and quantitation of antibody binding. Cytometry 2:249–257

    Article  PubMed  CAS  Google Scholar 

  • Steen HB, Lindmo T, Stokke T (1989) Differential light-scattering detection in an arc lampbased flow cytometer. In: Yen A (ed) Flow cytometry: Advanced research and clinical applications, vol. I. CRC Press, Boca Raton, Florida, p 63

    Google Scholar 

  • Visser G, Reinten C, Coplan P, Gilbert DA, Hammond K (1990) Oscillations in cell morphology and redox state. Biophys Chern 37:383–394

    Article  CAS  Google Scholar 

  • Volkov EI, Stolyarov MN, Brooks RF (1992) The modelling of heterogeneity in proliferative capacity during clonal growth. In: Volkov E (ed) Biophysical approach to complex biological phenomena. Nova, New York, pp 183–203

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag London

About this chapter

Cite this chapter

Lloyd, D. (1993). Flow Cytometry: A Technique Waiting for Microbiologists. In: Lloyd, D. (eds) Flow Cytometry in Microbiology. Springer, London. https://doi.org/10.1007/978-1-4471-2017-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2017-9_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2019-3

  • Online ISBN: 978-1-4471-2017-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics