Skip to main content

Metabolic and Behavioural Long Period Ultradian Rhythms in Endotherms

  • Chapter
Ultradian Rhythms in Life Processes

Abstract

We humans are much aware of a daily rhythm of behaviour. We wake up, wash, dress, breakfast, go to work or to accomplish a predetermined morning programme, then have lunch, perhaps go back home; after that comes dinner time and later on we go to bed and fall asleep. Of course this is not always at strictly regular times. Certain days there are variations in the schedule of occupation, weekends and holidays have many individualities. Seasons, weather, ageing and retirement modify ways of life. Some people are strict with time keeping, others are not. But the sequence of bed, breakfast, activity, lunch, activity, dinner, activity and bed are for many unavoidable, though, of course, at not regularly fixed times, but rather dependent on external current events. Furthermore, in a single day, we feel ourselves to be sometimes in a happy mood, for instance after good food, and sometimes depressed as a consequence of bad news. Even so we could have the sensation of rhythmic daily changes in humour, even independently of our psychological environment. Moreover, we know or rather we feel that, in a day, there are some kinds of hourly rhythms ruled by the clock; these have become societal cues in our busy lives. These cues have, for a long time, replaced the astronomical and solar light and dark signals that were originally the determinants of the activities of our forefathers. Time life tables of so-called “primitive” ethnic Australian and African people are still regulated by their temporal surroundings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allison T, Cichetti DV (1976) Sleep in mammals: ecological and constitutional correlates. Science 194: 732–734

    PubMed  CAS  Google Scholar 

  • Angeli A, Carandente F (1988) An update on clinical chronoendocrinology. In: Hekkens WJMH, Kerkhoff GA, Rietveld WJ (eds) Trends in chronobiology. Pergamon Press, Oxford, pp 319–333

    Google Scholar 

  • Aschoff J (1957) Aktivitätsmuster der Tagesperiodik. Naturwissenschaften, 13:361–367

    Google Scholar 

  • Aschoff J (1981) Handbook of behavioral neurology, vol 4, Biological rhythms. Plenum Press, New York London

    Google Scholar 

  • Aschoff J (1984) Circadian timing. Ann NY Acad Sci 423: 442–468

    PubMed  CAS  Google Scholar 

  • Aschoff J, Gerkema M (1985) On diversity and uniformity of ultradian rhythms. In: Schulz H, Lavie P (eds) Ultradian rhythms in physiology and behavior. Springer, Berlin Heidelberg New York, pp 321–334

    Google Scholar 

  • Aserinsky E, Kleitman N (1955) Regularly occurring periods of eye motility and concomitant phenomena during sleep. Science 118: 273–274

    Google Scholar 

  • Bailey D, Harry D, Johnson RE, Kupprat L (1973) Oscillations in oxygen consumption of man at rest. J Appl Physiol 34: 467–470

    PubMed  CAS  Google Scholar 

  • Barnett SA (1963) A study in behaviour. Camelot Press, London Southampton

    Google Scholar 

  • Benton LA, Berry SJ, Yates EF (1990) Ultradian rhythmic models of blood pressure variations in normal human daily life. Chronobiologia 17: 95–116

    PubMed  CAS  Google Scholar 

  • Berridge M, Rapp P (1979) A comparative survey of the function, mechanism and control of cellular oscillations. J Exp Biol 81: 217–286

    PubMed  CAS  Google Scholar 

  • Blinowska K, Marsh DJ (1985) Ultra- and circadian fluctuations in arterial pressure and electromyogram in conscious dogs. Am J Physiol 18: R720–R725

    Google Scholar 

  • Bowden DM, Kripke DF, Wyborney G (1978) Ultradian rhythms in waking behavior of Rhesus monkeys. Physiol Behav 21: 929–933

    PubMed  CAS  Google Scholar 

  • Brandenberger G, Follenius M, Muzet A, Ehrhart J, Schieber JP (1985) Ultradian oscillations in plasma renin activity: their relationships to meals and sleep stages. J Clin Endocrinol Metab 61: 280–284

    PubMed  CAS  Google Scholar 

  • Brandenberger G, Simon C, Follenius M (1987) Ultradian endocrine rhythms: a multi-oscillatory system. J Interdiscipl Cycle Res 18: 307–315

    Google Scholar 

  • Brandenberger G, Follenius M, Simon C, Ehrhart J, Libert JP (1988) Nocturnal oscillations in plasma renin activity and REM-NREM sleep cycles in humans: a common regulatory mechanism? Sleep 2: 242–250

    Google Scholar 

  • Broten TP, Zehr JE (1989) Baroreflex modulation of ultradian oscillations of blood pressure and heart rate in unanesthetized dogs. Chronobiologia 16: 241–255

    PubMed  CAS  Google Scholar 

  • Brown FA Jr, Hastings JW, Palmer JD (1970) The biological clock: two views. Academic Press, New York

    Google Scholar 

  • Bueno L (1986) Brain neuropeptides and ultradian motor activity of the gut. J Interdiscipl Cycle Res 17: 125–162

    Google Scholar 

  • Büttner D, Wollnik F (1984) Strain differentiated circadian and ultradian rhythms in locomotor activity of the laboratory rat. Behav Genet 14: 138–152

    Google Scholar 

  • Changeux JP (1983) L’homme neuronal. Fayard, Paris

    Google Scholar 

  • Chouvet G, Blois R, Debilly G, Jouvet M (1983) La structure d’occurrence des mouvements oculaires rapides du sommeil paradoxal est similaire chez les jumeaux homozygotes. CR Acad Sci Paris 296: 1063–1068

    CAS  Google Scholar 

  • Corner MA (1977) Sleep and the beginnings of behavior in the animal kingdom. Studies of ultradian motility cycles in early life. Prog Neurobiol 8: 279–285

    PubMed  CAS  Google Scholar 

  • Corner MA (1984) Maturation of sleep mechanisms in the central nervous system. Exp Brain Res 8 [Suppl]: 50–65

    Google Scholar 

  • Corner MA (1990) Brainstem control of behavior: ontogenic aspects. In: Klemm WR, Vertes RP (eds) Brainstem mechanisms of behavior. John Wiley, Chichester, pp 239–269

    Google Scholar 

  • Cozzi B, Ravault JP, Ferrandi B, Reiter RJ (1988) Melatonin concentration in cerebral vascular sinuses of sheep and evidence for its episodic release. J Pineal Res 5: 535–543

    PubMed  CAS  Google Scholar 

  • Crowcroft P (1954) The daily cycle of activity in British shrews. Proc Zool Soc Lond 123: 715–729

    Google Scholar 

  • Daan S, Aschoff J (1975) Circadian rhythms of locomotor activity in captive birds and mammals: their variations with season and latitude. Oecologia 18: 269–316

    Google Scholar 

  • Del Pozo F, De Feudis FV, Jimenez JM (1978) Motilities of isolated and aggregated mice. A difference in ultradian rhythmicity. Experientia 34: 1302–1304

    PubMed  Google Scholar 

  • Delcomyn F (1980) Neural basis of rhythmic behavior in animals. Science 210: 492–498

    PubMed  CAS  Google Scholar 

  • Delgado-Garcia JMR, Del Pozo F, Montero P, Monteagudo VL, O’Keeffe JI, Kline N (1978) Behavorial rhythms of gibbons on Hall’s Island. J Interdiscipl Cycle Res 9: 147–168

    Google Scholar 

  • Dierschke DJ, Bhattacharya AN, Atkinson LE, Knobil E (1970) Circhoral oscillations of plasma LH levels in the ovariectomized rhesus monkey. Endocrinology 87: 850–853

    PubMed  CAS  Google Scholar 

  • Eccles R, Maynard RC (1975) Studies on the nasal cycle in the immobilized pig. Proc Physiol Soc, Middlesex Hospital Meeting, 1–2 and 17–18

    Google Scholar 

  • Edmunds LN Jr (1976) Models and mechanisms for endogenous time keeping. In: Palmer JD (ed) An introduction to biological rhythms. Academic Press, New York San Francisco London, pp 280–361

    Google Scholar 

  • Ehret CF (1974) The sense of time: evidence for its molecular basis in the eukaryotic gene-action system. Adv Biol Med Phys 15: 47–77

    PubMed  CAS  Google Scholar 

  • Ellis GB, Desjardins C, Fräser HM (1983) Control of pulsatile LH release in male rats. Neuroendocrinology 37: 117–183

    Google Scholar 

  • Gardner R, Grossman WJ (1976) Normal patterns in sleep in man. In: Weitzman ED (ed) Advances in sleep research vol 2. Spectrum, New York, pp 66–107

    Google Scholar 

  • Globus GG, Phoebus EC, Humphries J, Boy R, Sharp R (1973) Ultradian rhythms in human telemetered gross motor activity. Aerosp Med 44: 882–887

    PubMed  CAS  Google Scholar 

  • Gordon CR, Lavie P (1985) Urinary ultradian rhythms in dogs. In: Schulz H, Lavie P (eds) Ultradian rhythms in physiology and behavior. Springer, Berlin Heidelberg New York, pp 110–124

    Google Scholar 

  • Hiatt JF, Kripke DF (1975) Ultradian rhythms in waking gastric acidity. Psychosom Med 34: 320–325

    Google Scholar 

  • Hildebrandt G (1988) Temporal order of ultradian rhythms in man. In: Hekkens WTJM, Kerkhof GA, Rietveld WJ (eds) Trends in chronobiology. Pergamon Press, Oxford, pp 107–122

    Google Scholar 

  • Hoogenboom I, Daan S, Daliinga JH, Schoenmakers M (1984) Seasonal change in the daily timing of behavior of the common vole Microtus arvalis. Oecologia 61: 18–21

    Google Scholar 

  • Hoppenbrouwers T (1986) Ontogenesis of ultradian respiratory rhythms. J Interdiscipl Cycle Res 17: 140–141

    Google Scholar 

  • Hoppenbrouwers T (1989) Sudden infant death syndrome (SIDS) and sleep. Proc IEEE Conf Eng Med Biol 11: 310–312

    Google Scholar 

  • Hoppenbrouwers T, Harper RM, Hodgman JE, Sterman MB, McGinty DJ (1978) Polygraphie studies of normal infants during the first six months of life. II. Respiratory rate and variability as a function of state. Pediatr Res 12: 120–125

    PubMed  CAS  Google Scholar 

  • Horne J (1988) Why we sleep. The function of sleep in humans and other mammals. Oxford University Press, Oxford

    Google Scholar 

  • Horne J, Whitehead M (1976) Ultradian and other rhythms in human respiration. Experientia 32: 1165–1167

    PubMed  CAS  Google Scholar 

  • Hughes GP, Reid D (1951) Studies on the behavior of cattle and sheep in relation to the utilization of grass. J Agric Sci 41: 360–366

    Google Scholar 

  • Iranmanesh A, Lizarralde G, Johnson ML, Veldhuis JD (1989) Circadian, ultradian and episodic release of β-endomorphin in man and its temporal coupling with Cortisol. J Clin Endocrinol Metab 68: 1019–1026

    PubMed  CAS  Google Scholar 

  • Jalife J (1990) Mathematical approaches to cardiac arrhythmias. Ann NY Acad Sci Vol 591

    Google Scholar 

  • Jilge B, Friess L, Stähle H (1986) Internal coupling of five functions of rabbits exhibiting a bimodal circadian rhythm. J Interdiscipl Cycle Res 17: 7–28

    Google Scholar 

  • Johnson LM, Gay LV (1981) Luteinizing hormone in the cat. I. Tonic secretion. Endocrinology 109: 240–246

    PubMed  CAS  Google Scholar 

  • Jouvet M (1961) Telencephalic and rhombencephalic sleep in the cat. In: Wolstenholme GEW, O’Connor MJA (eds) The nature of sleep. J.A. Churchill, London, pp 188–206

    Google Scholar 

  • Katz RJ (1980) The temporal structure of motivation. III. Identification and ecological significance of ultradian rhythms of intracranial reinforcement. Behav Neurol Biol 30: 148–159

    CAS  Google Scholar 

  • Kayser R (1895) Die exacte Messung der Luftdurch-gängigkeit der Nase. Arch Laryngol 3: 101–120

    Google Scholar 

  • Kayser C, Hildwein G (1974) Le rythme circadien de la consommation d’oxygène et de l’activité locomotrice du rat; ses relations avec les deux formes de sommeil: le sommeil à ondes lentes et le sommeil paradoxal. Dev Psychobiol 2: 216–239

    Google Scholar 

  • Kleitman N (1963) Sleep and wakefulness. University of Chicago Press, Chicago, IL

    Google Scholar 

  • Klevecz RR (1984) Cellular oscillators as vestiges of a primitive circadian clock. In: Edmunds LN Jr (ed) The cycle clocks. Marcel Dekker, New York, pp 47–61

    Google Scholar 

  • Kripke D (1982) Ultradian rhythms in behavior and physiology. In: Brown FM, Graeber RC (eds) Rhythmic aspects of behavior. Lawrence Erlbaum Associates, Hillsdale, NJ, pp 313–343

    Google Scholar 

  • Lavie P, Kripke DF (1977) Ultradian rhythms in urine flow in waking humans. Nature 269: 142–144

    PubMed  CAS  Google Scholar 

  • Lavie P, Kripke DF (1981) Ultradian circa \\ hour rhythms; a multioscillatory system. Life Sci 29: 2446–2450

    Google Scholar 

  • Lefcourt AM (1990) Circadian and ultradian rhythms in ruminants: relevance to farming and science. In: Hayes DK, Pauly JE, Reiter RJ (eds) Chronobiology: its role in clinical medicine, general biology and agriculture, pt B. Wiley-Liss, New York, pp 729–742

    Google Scholar 

  • Lemner BG, Caspari-Irving G, Weimer R (1981) Strain dependency in motor activity and in concentration and turnover of catecholamines in synchronized rats. Pharmacol Biochem Behav 15: 173–178

    Google Scholar 

  • Levin BE, Rappaport M, Natelson BH (1979) Ultradian variations of plasma noradrenaline in humans. Life Sci 25: 621–627

    PubMed  CAS  Google Scholar 

  • Livnat A, Zehr JE, Broten TP (1984) Ultradian oscillations in blood pressure and heart rate in free-running dogs. Am J Physiol 246: R817–R824

    PubMed  CAS  Google Scholar 

  • Lloyd D, Stupfel M (1991) The occurrence and functions of ultradian rhythms. Biol Rev 66: 275–299

    PubMed  CAS  Google Scholar 

  • Lovett Doust JW (1979) An ultradian periodic servosystem of thermoregulation in man. J Interdiscipl Cycle Res 10: 95–103

    Google Scholar 

  • Lovett Doust JW, Payne WD, Podnieks I (1978) An ultradian rhythm of reaction time measurements in man. Neuropsychobiology 4: 93–98

    PubMed  CAS  Google Scholar 

  • Maxim PE, Storrie M (1979) Ultradian barpressing for rewarding brain stimulation in rhesus monkeys. Physiol Behav 22: 683–687

    PubMed  CAS  Google Scholar 

  • McGinty DJ, Drucker-Colin RR (1982) Sleep mechanisms: biology and control of REM sleep. Int Rev Neurobiol 23: 391–436

    PubMed  CAS  Google Scholar 

  • Minors DS, Waterhouse JM (1981) Circadian rhythms and the human. Wright, Bristol London Boston

    Google Scholar 

  • Minors DS, Waterhouse JM (1984) The sleep-wakefulness rhythm, exogenous and endogenous factors (in man). Experientia 40: 410–416

    PubMed  CAS  Google Scholar 

  • Moore-Ede MC, Sulzman FM, Fuller CA (1982) The clocks that time us. Physiology of the circadian timing system. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Mori T, Inoue S, Minami S, Egawa M, Wakabayasi I (1986) Episodic growth hormone secretion following exogenous growth hormone-releasing factor in rats. Biomed Res 7: 371–377

    CAS  Google Scholar 

  • Morin LP (1986) A concept of physiological time: rhythms in behavior and reproductive physiology. Ann NY Acad Sci 474: 331–351

    PubMed  CAS  Google Scholar 

  • Odell WD, Griffin J (1987) Pulsatile secretion of human gonadotropin in normal adults. N Engl J Med 317: 1688–1691

    PubMed  CAS  Google Scholar 

  • Okudaira N, Kripke DF, Webster JB (1984) No basic rest-activity cycle in head, wrist or ankle. Physiol Behav 32: 843–845

    PubMed  CAS  Google Scholar 

  • Oliverio A, Malorni W (1979) Wheel running and sleep in two strains of mice: plasticity and rigidity in the expression of circadian rhythmicity. Brain Res 163: 121–133

    PubMed  CAS  Google Scholar 

  • Ortega SM, Cabrera MC (1990) Ultradian rhythms in EEG and task performance. Chronobiologia 17: 183–194

    Google Scholar 

  • Palmer JD (1976) An introduction to biological rhythms. Academic Press, New York San Francisco London

    Google Scholar 

  • Pang SF, Yip PC (1988) Secretory patterns of pineal melatonin in the rat. J Pineal Res 5: 279–292

    PubMed  CAS  Google Scholar 

  • Parmelee AH, Stern E (1972) Development of states in infants. In: Clemente CD, Purpura DP, Mayer FE (eds) Sleep and the developing nervous system. Academic Press, New York, pp 199–215

    Google Scholar 

  • Pelletier J, Thiery JC (1986) The LH pulsatility: a reflection of a centrally inhibited rhythm? J Interdiscipl Cycle Res 17: 148–149

    Google Scholar 

  • Pöllman L, Pöllman B (1988) Ultradian rhythms (about 1.5 hours) in pain thresholds. Pflugers Arch 412 [Suppl]: R49

    Google Scholar 

  • Prigogine I (1961) Introduction to the thermodynamics of irreversible progress. Interscience, New York

    Google Scholar 

  • Prigogine I, Balescu R (1956) Phénomènes cycliques dans la thermodynamique des processus irréversibles. Bull Acad R Belg Clin Sci 42: 256–263

    CAS  Google Scholar 

  • Putet G, Stupfel M, Gourlet V, Salle B, Court L (1990) Respiratory and metabolic ultradian (40 min < period < 6h) variations in normal premature infants periodically fed through a gastric tube. Chronobiologia 17:1–13

    Google Scholar 

  • Rasmussen DD (1986) Physiological interaction of the basic rest-activity cycle of the brain: pulsatile luteinizing hormone secretion as a model. Psychoneuroendocrinology 11: 389–405

    PubMed  CAS  Google Scholar 

  • Rasmussen DD, Jacobs W, Kissinger PT, Malven PV (1981) Plasma luteinizing hormone in ovariectomized rats following pharmacologic manipulation of endogenous brain serotonin. Brain Res 229: 230–235

    PubMed  CAS  Google Scholar 

  • Richter CP (1922) A behavioristic study of the activity of the rat. Comp Psychol Monogr 1: 1–15

    Google Scholar 

  • Richter CP (1927) Animal behavior and internal drives. Q Rev Biol 2: 307–343

    Google Scholar 

  • Roberts W (1860) Observations on some of the daily changes of the urine. Edin Med J 5: 817–825

    Google Scholar 

  • Rossi EL (1982) Hypnosis and ultradian cycles: a new state(s) theory of hypnosis. Am J Clin Hypn 25: 21–32

    PubMed  CAS  Google Scholar 

  • Rossi EL (1986) Altered states of consciousness in every day life: the ultradian rhythms. In: Wolman B, Ullman M (eds) Handbook of altered states of consciousness. Van Nostrand, New York, pp 97–132

    Google Scholar 

  • Roussel B, Bittel J (1979) Thermogenesis and thermolysis during sleeping and waking in the rat. Pflugers Arch 382: 225–231

    PubMed  CAS  Google Scholar 

  • Rubsamen K, Hörnicke H (1981) Herzschlag-frequenz und O2-Verbrauch als Belastungsindikatoren bei Kaninchen. In: Aktuelle Arbeiten zur artgemässen Tierhaltung. Kuratorium für Technik und Bauwesen in der Landwirtschaft, 5th edn, pp 84–93

    Google Scholar 

  • Sander LW, Stechler G, Burns P et al. (1970) Early mother-infant interaction and 24-hour patterns of activity and sleep. J Am Acad Child Psychiatry 9: 103–123

    PubMed  CAS  Google Scholar 

  • Schulz H (1988) Schlafforschung. In: Kisker K, Lauter H, Meyer JE, Müller C, Stromgrens S (eds) Psychiatrie der Gegenwart, Band 6, Organische Psychosen. Springer, Berlin Heidelberg New York, pp 401–442

    Google Scholar 

  • Schulz H, Lavie P (1985) Ultradian rhythms in physiology and behavior. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Shimada SG, Marsh DJ (1979) Oscillations in mean arterial blood pressure in conscious dogs. Circulât Res 44: 692–700

    PubMed  CAS  Google Scholar 

  • Simon C, Brandenberger G, Follenius M (1987) Ultradian oscillations of plasma glucose, insulin and C-peptide in man under continuous enteral nutrition. J Clin Endocrinol Metab 64: 669–674

    PubMed  CAS  Google Scholar 

  • Stanbury SW, Thompson AE (1951) Diurnal variations in electrolyte excretion. Clin Sci 10: 267–293

    PubMed  CAS  Google Scholar 

  • Sterman MB, Hoppenbrouwers T (1971) The development of sleep-waking and rest-activity patterns from fetus to adult in man. In: Sterman MB, McGinty DJ, Adinolfi AM (ed) Brain development and behavior. Academic Press, New York, pp 203–227

    Google Scholar 

  • Sterman M, Lucas E, MacDonald L (1972) Periodicity within sleep and operant performance in the cat. Brain Res 38: 327–341

    PubMed  CAS  Google Scholar 

  • Stupfel M, Pavely A (1990) Review. Ultradian, circahoral and circadian structures in endothermic vertebrates and humans. Comp Biochem Physiol 96A: 1–11

    CAS  Google Scholar 

  • Stupfel M, Davergne M, Perramon A, Lemercerre C, Gourlet V (1979) Rhythmes ultradiens (5< τ < 10 minutes) respiratoires (VO2, VCO2) de quatre petits vertebrés utilisés pour la recherche biomedicale. CR Acad Sci Paris 289D:675–678

    Google Scholar 

  • Stupfel M, Molin D, Thierry H, Busnel MC (1980) Respiratory activity variations induced in groups of LD 12:12 synchronized Sprague-Dawley rats by a 100 dB white noise emitted at 12- hour intervals. Chronobiologia 7: 337–342

    PubMed  CAS  Google Scholar 

  • Stupfel M, Perramon A, Mérat P, Demaria Pesce VH, Massé H, Gourlet V (1981a) Grouping and respiratory behavior induced in rats and quails by LD 12:12 illumination. Physiol Behav 25: 439–447

    Google Scholar 

  • Stupfel M, Perramon A, Gourlet V et al. (1981b) Light-dark and societal synchronization of respiratory and motor activities in laboratory mice, rats, guinea-pigs and quails. Comp Biochem Physiol 70A: 265–274

    Google Scholar 

  • Stupfel M, Perramon A, Gourlet V, Thierry H, Ali M, Lemercerre C (1983) Harmonic analysis of ultradian respiratory rhythms in four small laboratory vertebrates lit in LD 12:12. Comp Biochem Physiol 75A: 293–297

    CAS  Google Scholar 

  • Stupfel M, Gourlet V, Zeitoun G, Maral R, Bourut C, Chenu E (1984) Effects of B16 melanoma transplantation on the respiration of grouped C57 B1 female mice. Biomed Pharmacother 38: 389–397

    PubMed  CAS  Google Scholar 

  • Stupfel M, Gourlet V, Court L, Demaria Pesce VH (1986a) Starvation and respiratory rhythmic behavior in groups of light-dark synchronized Sprague-Dawley rats. Physiol Behav 58: 265–274

    Google Scholar 

  • Stupfel M, Gourlet V, Court L (1986b) Effects of aging on circadian and ultradian respiratory rhythms of rats synchronized by a LD 12:12 lighting (L = 100 lux). Gerontology 32: 81–90

    PubMed  CAS  Google Scholar 

  • Stupfel M, Gourlet V, Court L, Mestries J, Perramon A, Merat P (1987) Periodic analysis of ultradien (40 min < τ < 24h) respiratory variations in laboratory vertebrates of various circadian activities. Chronobiologia 14:365–375

    Google Scholar 

  • Stupfel M, Gourlet V, Perramon A, Monvoisin JL, Court L (1989a) Societal synchronization in groups of rats or quail submitted to various lighting regimens. Chronobiolgia 16: 215–228

    CAS  Google Scholar 

  • Stupfel M, Gourlet V, Court L, Perramon A, Mérat P, Lemercerre C (1989b) There are basic rest-activity ultradian rhythms of carbon dioxide emission in small laboratory vertebrates characteristic of each species. Prog Clin Biol Res 341A: 179–184

    Google Scholar 

  • Stupfel M, Gourlet V, Perramon A, Mérat P, Court L (1990) Ultradian and circadian compartmentalization of respiratory and metabolic exchanges in small laboratory vertebrates. Chronobiologia 17: 275–304

    PubMed  CAS  Google Scholar 

  • Stupfel M, Gourlet V, Demaria Pesce VH, Plétan Y (1991) Are there behavioral sequelae following an acute carbon monoxide intoxication? An animal model. Int J Environ Health Res 1: 87–102

    CAS  Google Scholar 

  • Sulzman FM, Fuller CE, Moore-Ede MC (1978) Comparison of synchronization of primate circadian rhythms by light and food. Am J Physiol 234: R130–R135

    PubMed  CAS  Google Scholar 

  • Szymanski JS (1918) Versuche über Aktivität und Ruhe bei Saüglingen. Pflugers Arch 172: 424–429

    Google Scholar 

  • Tannenbaum GS, Martin JB (1976) Evidence for an endogenous ultradian rhythm governing growth hormone secretion in the rat. Endocrinology 98: 562–570

    PubMed  CAS  Google Scholar 

  • Termier H, Termier G (1979) Histoire de la terre. PUF, Paris

    Google Scholar 

  • Tobler I (1984) Evolution of sleep process: a phylogenetic approach. In: Borbély A, Valatx JL (eds) Sleep mechanisms. Springer, Berlin Heidelberg New York, pp 207–238

    Google Scholar 

  • Valatx JL (1984) Genetics as a model for studying the sleep-waking cycle. Exp Brain Res 8 [Suppl]: 135–143

    CAS  Google Scholar 

  • Vaughan GM, Bell R, De la Pena A (1979) Nocturnal plasma melatonin in humans: episodic pattern and influence of light. Neurosci Lett 14: 81–84

    PubMed  CAS  Google Scholar 

  • Weigelin J (1868) Versuche über die Harnstoffauscheidung wahrend und nach der Muskelhetigkeit. Arch Anat Physiol Wiss Med, pp 207–223

    Google Scholar 

  • Weitzman ED (1975) Neuroendocrine pattern of secretion during the sleep-wake cycle of man. Prog Brain Res 42: 93–102

    PubMed  CAS  Google Scholar 

  • Weitzman ED, Hellman L (1974) Temporal organization of the 24-hour pattern of the hypothalamic pituitary axis. In: Ferin M, Halberg F, Richart RM, Vandewiele RL (eds) Biorhythms and human reproduction. Wiley, New York, pp 371–395

    Google Scholar 

  • Weitzman ED, Fukushima D, Nogeire C (1974) Studies in ultradian rhythms in human sleep and associated neuroendocrine rhythms. In: Scheving LE, Halberg F, Pauly JE (eds) Chronobiology. Igaku Shoin Ltd, Tokyo, pp 503–505

    Google Scholar 

  • Werntz DA, Bickford RG, Bloom FE, Shannahoff-Khalsa DS (1983) Alternating cerebral hemispheric activity and the lateralization of autonomic nervous function. Human Neurobiol 2: 39–43

    CAS  Google Scholar 

  • Wever RA (1979) The circadian system of man. Springer, Berlin Heidelberg New York Wilson DM, Kripke DF, McClure DK, Greenburg GA (1977) Ultradian cardiac rhythms in surgical intensive care unit patients. Psychosom Med 39: 432–435

    Google Scholar 

  • Wilson DM, Kripke DF, McClure DK, Greenburg GA (1977) Ultradian cardiac rythms in surgical intensive care unit patients. Psychosen Med 39:432–435

    Google Scholar 

  • Wise PM, Weiland NG, Scarbrough K, Larson GH, Lloyd JM (1990) Contribution of changing rhythmicity of hypothalamic neurotransmitter function to female reproductive aging. Ann NY Acad Sci 592: 31–43

    PubMed  CAS  Google Scholar 

  • Wollnik F, Döhler KD (1986) Effects of adult or perinatal hormonal environment on ultradian rhythms in locomotor activity of laboratory LEW/Ztm rats. Physiol Behav 38: 229–240

    PubMed  CAS  Google Scholar 

  • Yates EF (1982) Outline of a physical theory of physiological systems. Can J Physiol Pharmacol 60: 217–248

    PubMed  CAS  Google Scholar 

  • Yen SSC, Tsai CC, Naftolin F, Vandenberg G, Ajabor L (1972) Pulsatile patterns of gonadotropin release in subjects with and without ovarian function. J Clin Endocrinol Metab 34: 671–675

    PubMed  CAS  Google Scholar 

  • Zepelin H, Rechschaffen A (1974) Mammalian sleep, longevity, and energy metabolism. Brain Behav Evol 10: 425–470

    PubMed  CAS  Google Scholar 

  • Zung WWK, Wilson WP (1967) Sleep and dream patterns in twins. In: Wartis J (ed) Recent advances in biological psychiatry, vol IX. Plenum Press, New York, pp 119–130

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Additional information

Nous sommes tous l’heure qui sonne. Blaise Cendrars, Aujourd’hui.To ultradian Ina.

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag London Limited

About this chapter

Cite this chapter

Stupfel, M. (1992). Metabolic and Behavioural Long Period Ultradian Rhythms in Endotherms. In: Lloyd, D., Rossi, E.L. (eds) Ultradian Rhythms in Life Processes. Springer, London. https://doi.org/10.1007/978-1-4471-1969-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1969-2_11

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1971-5

  • Online ISBN: 978-1-4471-1969-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics