Metabolic and Behavioural Long Period Ultradian Rhythms in Endotherms

  • M. Stupfel

Abstract

We humans are much aware of a daily rhythm of behaviour. We wake up, wash, dress, breakfast, go to work or to accomplish a predetermined morning programme, then have lunch, perhaps go back home; after that comes dinner time and later on we go to bed and fall asleep. Of course this is not always at strictly regular times. Certain days there are variations in the schedule of occupation, weekends and holidays have many individualities. Seasons, weather, ageing and retirement modify ways of life. Some people are strict with time keeping, others are not. But the sequence of bed, breakfast, activity, lunch, activity, dinner, activity and bed are for many unavoidable, though, of course, at not regularly fixed times, but rather dependent on external current events. Furthermore, in a single day, we feel ourselves to be sometimes in a happy mood, for instance after good food, and sometimes depressed as a consequence of bad news. Even so we could have the sensation of rhythmic daily changes in humour, even independently of our psychological environment. Moreover, we know or rather we feel that, in a day, there are some kinds of hourly rhythms ruled by the clock; these have become societal cues in our busy lives. These cues have, for a long time, replaced the astronomical and solar light and dark signals that were originally the determinants of the activities of our forefathers. Time life tables of so-called “primitive” ethnic Australian and African people are still regulated by their temporal surroundings.

Keywords

Dust Convection Chlorophyll Cage Photosynthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison T, Cichetti DV (1976) Sleep in mammals: ecological and constitutional correlates. Science 194: 732–734PubMedGoogle Scholar
  2. Angeli A, Carandente F (1988) An update on clinical chronoendocrinology. In: Hekkens WJMH, Kerkhoff GA, Rietveld WJ (eds) Trends in chronobiology. Pergamon Press, Oxford, pp 319–333Google Scholar
  3. Aschoff J (1957) Aktivitätsmuster der Tagesperiodik. Naturwissenschaften, 13:361–367Google Scholar
  4. Aschoff J (1981) Handbook of behavioral neurology, vol 4, Biological rhythms. Plenum Press, New York LondonGoogle Scholar
  5. Aschoff J (1984) Circadian timing. Ann NY Acad Sci 423: 442–468PubMedGoogle Scholar
  6. Aschoff J, Gerkema M (1985) On diversity and uniformity of ultradian rhythms. In: Schulz H, Lavie P (eds) Ultradian rhythms in physiology and behavior. Springer, Berlin Heidelberg New York, pp 321–334Google Scholar
  7. Aserinsky E, Kleitman N (1955) Regularly occurring periods of eye motility and concomitant phenomena during sleep. Science 118: 273–274Google Scholar
  8. Bailey D, Harry D, Johnson RE, Kupprat L (1973) Oscillations in oxygen consumption of man at rest. J Appl Physiol 34: 467–470PubMedGoogle Scholar
  9. Barnett SA (1963) A study in behaviour. Camelot Press, London SouthamptonGoogle Scholar
  10. Benton LA, Berry SJ, Yates EF (1990) Ultradian rhythmic models of blood pressure variations in normal human daily life. Chronobiologia 17: 95–116PubMedGoogle Scholar
  11. Berridge M, Rapp P (1979) A comparative survey of the function, mechanism and control of cellular oscillations. J Exp Biol 81: 217–286PubMedGoogle Scholar
  12. Blinowska K, Marsh DJ (1985) Ultra- and circadian fluctuations in arterial pressure and electromyogram in conscious dogs. Am J Physiol 18: R720–R725Google Scholar
  13. Bowden DM, Kripke DF, Wyborney G (1978) Ultradian rhythms in waking behavior of Rhesus monkeys. Physiol Behav 21: 929–933PubMedGoogle Scholar
  14. Brandenberger G, Follenius M, Muzet A, Ehrhart J, Schieber JP (1985) Ultradian oscillations in plasma renin activity: their relationships to meals and sleep stages. J Clin Endocrinol Metab 61: 280–284PubMedGoogle Scholar
  15. Brandenberger G, Simon C, Follenius M (1987) Ultradian endocrine rhythms: a multi-oscillatory system. J Interdiscipl Cycle Res 18: 307–315Google Scholar
  16. Brandenberger G, Follenius M, Simon C, Ehrhart J, Libert JP (1988) Nocturnal oscillations in plasma renin activity and REM-NREM sleep cycles in humans: a common regulatory mechanism? Sleep 2: 242–250Google Scholar
  17. Broten TP, Zehr JE (1989) Baroreflex modulation of ultradian oscillations of blood pressure and heart rate in unanesthetized dogs. Chronobiologia 16: 241–255PubMedGoogle Scholar
  18. Brown FA Jr, Hastings JW, Palmer JD (1970) The biological clock: two views. Academic Press, New YorkGoogle Scholar
  19. Bueno L (1986) Brain neuropeptides and ultradian motor activity of the gut. J Interdiscipl Cycle Res 17: 125–162Google Scholar
  20. Büttner D, Wollnik F (1984) Strain differentiated circadian and ultradian rhythms in locomotor activity of the laboratory rat. Behav Genet 14: 138–152Google Scholar
  21. Changeux JP (1983) L’homme neuronal. Fayard, ParisGoogle Scholar
  22. Chouvet G, Blois R, Debilly G, Jouvet M (1983) La structure d’occurrence des mouvements oculaires rapides du sommeil paradoxal est similaire chez les jumeaux homozygotes. CR Acad Sci Paris 296: 1063–1068Google Scholar
  23. Corner MA (1977) Sleep and the beginnings of behavior in the animal kingdom. Studies of ultradian motility cycles in early life. Prog Neurobiol 8: 279–285PubMedGoogle Scholar
  24. Corner MA (1984) Maturation of sleep mechanisms in the central nervous system. Exp Brain Res 8 [Suppl]: 50–65Google Scholar
  25. Corner MA (1990) Brainstem control of behavior: ontogenic aspects. In: Klemm WR, Vertes RP (eds) Brainstem mechanisms of behavior. John Wiley, Chichester, pp 239–269Google Scholar
  26. Cozzi B, Ravault JP, Ferrandi B, Reiter RJ (1988) Melatonin concentration in cerebral vascular sinuses of sheep and evidence for its episodic release. J Pineal Res 5: 535–543PubMedGoogle Scholar
  27. Crowcroft P (1954) The daily cycle of activity in British shrews. Proc Zool Soc Lond 123: 715–729Google Scholar
  28. Daan S, Aschoff J (1975) Circadian rhythms of locomotor activity in captive birds and mammals: their variations with season and latitude. Oecologia 18: 269–316Google Scholar
  29. Del Pozo F, De Feudis FV, Jimenez JM (1978) Motilities of isolated and aggregated mice. A difference in ultradian rhythmicity. Experientia 34: 1302–1304PubMedGoogle Scholar
  30. Delcomyn F (1980) Neural basis of rhythmic behavior in animals. Science 210: 492–498PubMedGoogle Scholar
  31. Delgado-Garcia JMR, Del Pozo F, Montero P, Monteagudo VL, O’Keeffe JI, Kline N (1978) Behavorial rhythms of gibbons on Hall’s Island. J Interdiscipl Cycle Res 9: 147–168Google Scholar
  32. Dierschke DJ, Bhattacharya AN, Atkinson LE, Knobil E (1970) Circhoral oscillations of plasma LH levels in the ovariectomized rhesus monkey. Endocrinology 87: 850–853PubMedGoogle Scholar
  33. Eccles R, Maynard RC (1975) Studies on the nasal cycle in the immobilized pig. Proc Physiol Soc, Middlesex Hospital Meeting, 1–2 and 17–18Google Scholar
  34. Edmunds LN Jr (1976) Models and mechanisms for endogenous time keeping. In: Palmer JD (ed) An introduction to biological rhythms. Academic Press, New York San Francisco London, pp 280–361Google Scholar
  35. Ehret CF (1974) The sense of time: evidence for its molecular basis in the eukaryotic gene-action system. Adv Biol Med Phys 15: 47–77PubMedGoogle Scholar
  36. Ellis GB, Desjardins C, Fräser HM (1983) Control of pulsatile LH release in male rats. Neuroendocrinology 37: 117–183Google Scholar
  37. Gardner R, Grossman WJ (1976) Normal patterns in sleep in man. In: Weitzman ED (ed) Advances in sleep research vol 2. Spectrum, New York, pp 66–107Google Scholar
  38. Globus GG, Phoebus EC, Humphries J, Boy R, Sharp R (1973) Ultradian rhythms in human telemetered gross motor activity. Aerosp Med 44: 882–887PubMedGoogle Scholar
  39. Gordon CR, Lavie P (1985) Urinary ultradian rhythms in dogs. In: Schulz H, Lavie P (eds) Ultradian rhythms in physiology and behavior. Springer, Berlin Heidelberg New York, pp 110–124Google Scholar
  40. Hiatt JF, Kripke DF (1975) Ultradian rhythms in waking gastric acidity. Psychosom Med 34: 320–325Google Scholar
  41. Hildebrandt G (1988) Temporal order of ultradian rhythms in man. In: Hekkens WTJM, Kerkhof GA, Rietveld WJ (eds) Trends in chronobiology. Pergamon Press, Oxford, pp 107–122Google Scholar
  42. Hoogenboom I, Daan S, Daliinga JH, Schoenmakers M (1984) Seasonal change in the daily timing of behavior of the common vole Microtus arvalis. Oecologia 61: 18–21Google Scholar
  43. Hoppenbrouwers T (1986) Ontogenesis of ultradian respiratory rhythms. J Interdiscipl Cycle Res 17: 140–141Google Scholar
  44. Hoppenbrouwers T (1989) Sudden infant death syndrome (SIDS) and sleep. Proc IEEE Conf Eng Med Biol 11: 310–312Google Scholar
  45. Hoppenbrouwers T, Harper RM, Hodgman JE, Sterman MB, McGinty DJ (1978) Polygraphie studies of normal infants during the first six months of life. II. Respiratory rate and variability as a function of state. Pediatr Res 12: 120–125PubMedGoogle Scholar
  46. Horne J (1988) Why we sleep. The function of sleep in humans and other mammals. Oxford University Press, OxfordGoogle Scholar
  47. Horne J, Whitehead M (1976) Ultradian and other rhythms in human respiration. Experientia 32: 1165–1167PubMedGoogle Scholar
  48. Hughes GP, Reid D (1951) Studies on the behavior of cattle and sheep in relation to the utilization of grass. J Agric Sci 41: 360–366Google Scholar
  49. Iranmanesh A, Lizarralde G, Johnson ML, Veldhuis JD (1989) Circadian, ultradian and episodic release of β-endomorphin in man and its temporal coupling with Cortisol. J Clin Endocrinol Metab 68: 1019–1026PubMedGoogle Scholar
  50. Jalife J (1990) Mathematical approaches to cardiac arrhythmias. Ann NY Acad Sci Vol 591Google Scholar
  51. Jilge B, Friess L, Stähle H (1986) Internal coupling of five functions of rabbits exhibiting a bimodal circadian rhythm. J Interdiscipl Cycle Res 17: 7–28Google Scholar
  52. Johnson LM, Gay LV (1981) Luteinizing hormone in the cat. I. Tonic secretion. Endocrinology 109: 240–246PubMedGoogle Scholar
  53. Jouvet M (1961) Telencephalic and rhombencephalic sleep in the cat. In: Wolstenholme GEW, O’Connor MJA (eds) The nature of sleep. J.A. Churchill, London, pp 188–206Google Scholar
  54. Katz RJ (1980) The temporal structure of motivation. III. Identification and ecological significance of ultradian rhythms of intracranial reinforcement. Behav Neurol Biol 30: 148–159Google Scholar
  55. Kayser R (1895) Die exacte Messung der Luftdurch-gängigkeit der Nase. Arch Laryngol 3: 101–120Google Scholar
  56. Kayser C, Hildwein G (1974) Le rythme circadien de la consommation d’oxygène et de l’activité locomotrice du rat; ses relations avec les deux formes de sommeil: le sommeil à ondes lentes et le sommeil paradoxal. Dev Psychobiol 2: 216–239Google Scholar
  57. Kleitman N (1963) Sleep and wakefulness. University of Chicago Press, Chicago, ILGoogle Scholar
  58. Klevecz RR (1984) Cellular oscillators as vestiges of a primitive circadian clock. In: Edmunds LN Jr (ed) The cycle clocks. Marcel Dekker, New York, pp 47–61Google Scholar
  59. Kripke D (1982) Ultradian rhythms in behavior and physiology. In: Brown FM, Graeber RC (eds) Rhythmic aspects of behavior. Lawrence Erlbaum Associates, Hillsdale, NJ, pp 313–343Google Scholar
  60. Lavie P, Kripke DF (1977) Ultradian rhythms in urine flow in waking humans. Nature 269: 142–144PubMedGoogle Scholar
  61. Lavie P, Kripke DF (1981) Ultradian circa \\ hour rhythms; a multioscillatory system. Life Sci 29: 2446–2450Google Scholar
  62. Lefcourt AM (1990) Circadian and ultradian rhythms in ruminants: relevance to farming and science. In: Hayes DK, Pauly JE, Reiter RJ (eds) Chronobiology: its role in clinical medicine, general biology and agriculture, pt B. Wiley-Liss, New York, pp 729–742Google Scholar
  63. Lemner BG, Caspari-Irving G, Weimer R (1981) Strain dependency in motor activity and in concentration and turnover of catecholamines in synchronized rats. Pharmacol Biochem Behav 15: 173–178Google Scholar
  64. Levin BE, Rappaport M, Natelson BH (1979) Ultradian variations of plasma noradrenaline in humans. Life Sci 25: 621–627PubMedGoogle Scholar
  65. Livnat A, Zehr JE, Broten TP (1984) Ultradian oscillations in blood pressure and heart rate in free-running dogs. Am J Physiol 246: R817–R824PubMedGoogle Scholar
  66. Lloyd D, Stupfel M (1991) The occurrence and functions of ultradian rhythms. Biol Rev 66: 275–299PubMedGoogle Scholar
  67. Lovett Doust JW (1979) An ultradian periodic servosystem of thermoregulation in man. J Interdiscipl Cycle Res 10: 95–103Google Scholar
  68. Lovett Doust JW, Payne WD, Podnieks I (1978) An ultradian rhythm of reaction time measurements in man. Neuropsychobiology 4: 93–98PubMedGoogle Scholar
  69. Maxim PE, Storrie M (1979) Ultradian barpressing for rewarding brain stimulation in rhesus monkeys. Physiol Behav 22: 683–687PubMedGoogle Scholar
  70. McGinty DJ, Drucker-Colin RR (1982) Sleep mechanisms: biology and control of REM sleep. Int Rev Neurobiol 23: 391–436PubMedGoogle Scholar
  71. Minors DS, Waterhouse JM (1981) Circadian rhythms and the human. Wright, Bristol London BostonGoogle Scholar
  72. Minors DS, Waterhouse JM (1984) The sleep-wakefulness rhythm, exogenous and endogenous factors (in man). Experientia 40: 410–416PubMedGoogle Scholar
  73. Moore-Ede MC, Sulzman FM, Fuller CA (1982) The clocks that time us. Physiology of the circadian timing system. Harvard University Press, Cambridge, MAGoogle Scholar
  74. Mori T, Inoue S, Minami S, Egawa M, Wakabayasi I (1986) Episodic growth hormone secretion following exogenous growth hormone-releasing factor in rats. Biomed Res 7: 371–377Google Scholar
  75. Morin LP (1986) A concept of physiological time: rhythms in behavior and reproductive physiology. Ann NY Acad Sci 474: 331–351PubMedGoogle Scholar
  76. Odell WD, Griffin J (1987) Pulsatile secretion of human gonadotropin in normal adults. N Engl J Med 317: 1688–1691PubMedGoogle Scholar
  77. Okudaira N, Kripke DF, Webster JB (1984) No basic rest-activity cycle in head, wrist or ankle. Physiol Behav 32: 843–845PubMedGoogle Scholar
  78. Oliverio A, Malorni W (1979) Wheel running and sleep in two strains of mice: plasticity and rigidity in the expression of circadian rhythmicity. Brain Res 163: 121–133PubMedGoogle Scholar
  79. Ortega SM, Cabrera MC (1990) Ultradian rhythms in EEG and task performance. Chronobiologia 17: 183–194Google Scholar
  80. Palmer JD (1976) An introduction to biological rhythms. Academic Press, New York San Francisco LondonGoogle Scholar
  81. Pang SF, Yip PC (1988) Secretory patterns of pineal melatonin in the rat. J Pineal Res 5: 279–292PubMedGoogle Scholar
  82. Parmelee AH, Stern E (1972) Development of states in infants. In: Clemente CD, Purpura DP, Mayer FE (eds) Sleep and the developing nervous system. Academic Press, New York, pp 199–215Google Scholar
  83. Pelletier J, Thiery JC (1986) The LH pulsatility: a reflection of a centrally inhibited rhythm? J Interdiscipl Cycle Res 17: 148–149Google Scholar
  84. Pöllman L, Pöllman B (1988) Ultradian rhythms (about 1.5 hours) in pain thresholds. Pflugers Arch 412 [Suppl]: R49Google Scholar
  85. Prigogine I (1961) Introduction to the thermodynamics of irreversible progress. Interscience, New YorkGoogle Scholar
  86. Prigogine I, Balescu R (1956) Phénomènes cycliques dans la thermodynamique des processus irréversibles. Bull Acad R Belg Clin Sci 42: 256–263Google Scholar
  87. Putet G, Stupfel M, Gourlet V, Salle B, Court L (1990) Respiratory and metabolic ultradian (40 min < period < 6h) variations in normal premature infants periodically fed through a gastric tube. Chronobiologia 17:1–13Google Scholar
  88. Rasmussen DD (1986) Physiological interaction of the basic rest-activity cycle of the brain: pulsatile luteinizing hormone secretion as a model. Psychoneuroendocrinology 11: 389–405PubMedGoogle Scholar
  89. Rasmussen DD, Jacobs W, Kissinger PT, Malven PV (1981) Plasma luteinizing hormone in ovariectomized rats following pharmacologic manipulation of endogenous brain serotonin. Brain Res 229: 230–235PubMedGoogle Scholar
  90. Richter CP (1922) A behavioristic study of the activity of the rat. Comp Psychol Monogr 1: 1–15Google Scholar
  91. Richter CP (1927) Animal behavior and internal drives. Q Rev Biol 2: 307–343Google Scholar
  92. Roberts W (1860) Observations on some of the daily changes of the urine. Edin Med J 5: 817–825Google Scholar
  93. Rossi EL (1982) Hypnosis and ultradian cycles: a new state(s) theory of hypnosis. Am J Clin Hypn 25: 21–32PubMedGoogle Scholar
  94. Rossi EL (1986) Altered states of consciousness in every day life: the ultradian rhythms. In: Wolman B, Ullman M (eds) Handbook of altered states of consciousness. Van Nostrand, New York, pp 97–132Google Scholar
  95. Roussel B, Bittel J (1979) Thermogenesis and thermolysis during sleeping and waking in the rat. Pflugers Arch 382: 225–231PubMedGoogle Scholar
  96. Rubsamen K, Hörnicke H (1981) Herzschlag-frequenz und O2-Verbrauch als Belastungsindikatoren bei Kaninchen. In: Aktuelle Arbeiten zur artgemässen Tierhaltung. Kuratorium für Technik und Bauwesen in der Landwirtschaft, 5th edn, pp 84–93Google Scholar
  97. Sander LW, Stechler G, Burns P et al. (1970) Early mother-infant interaction and 24-hour patterns of activity and sleep. J Am Acad Child Psychiatry 9: 103–123PubMedGoogle Scholar
  98. Schulz H (1988) Schlafforschung. In: Kisker K, Lauter H, Meyer JE, Müller C, Stromgrens S (eds) Psychiatrie der Gegenwart, Band 6, Organische Psychosen. Springer, Berlin Heidelberg New York, pp 401–442Google Scholar
  99. Schulz H, Lavie P (1985) Ultradian rhythms in physiology and behavior. Springer, Berlin Heidelberg New YorkGoogle Scholar
  100. Shimada SG, Marsh DJ (1979) Oscillations in mean arterial blood pressure in conscious dogs. Circulât Res 44: 692–700PubMedGoogle Scholar
  101. Simon C, Brandenberger G, Follenius M (1987) Ultradian oscillations of plasma glucose, insulin and C-peptide in man under continuous enteral nutrition. J Clin Endocrinol Metab 64: 669–674PubMedGoogle Scholar
  102. Stanbury SW, Thompson AE (1951) Diurnal variations in electrolyte excretion. Clin Sci 10: 267–293PubMedGoogle Scholar
  103. Sterman MB, Hoppenbrouwers T (1971) The development of sleep-waking and rest-activity patterns from fetus to adult in man. In: Sterman MB, McGinty DJ, Adinolfi AM (ed) Brain development and behavior. Academic Press, New York, pp 203–227Google Scholar
  104. Sterman M, Lucas E, MacDonald L (1972) Periodicity within sleep and operant performance in the cat. Brain Res 38: 327–341PubMedGoogle Scholar
  105. Stupfel M, Pavely A (1990) Review. Ultradian, circahoral and circadian structures in endothermic vertebrates and humans. Comp Biochem Physiol 96A: 1–11Google Scholar
  106. Stupfel M, Davergne M, Perramon A, Lemercerre C, Gourlet V (1979) Rhythmes ultradiens (5< τ < 10 minutes) respiratoires (VO2, VCO2) de quatre petits vertebrés utilisés pour la recherche biomedicale. CR Acad Sci Paris 289D:675–678Google Scholar
  107. Stupfel M, Molin D, Thierry H, Busnel MC (1980) Respiratory activity variations induced in groups of LD 12:12 synchronized Sprague-Dawley rats by a 100 dB white noise emitted at 12- hour intervals. Chronobiologia 7: 337–342PubMedGoogle Scholar
  108. Stupfel M, Perramon A, Mérat P, Demaria Pesce VH, Massé H, Gourlet V (1981a) Grouping and respiratory behavior induced in rats and quails by LD 12:12 illumination. Physiol Behav 25: 439–447Google Scholar
  109. Stupfel M, Perramon A, Gourlet V et al. (1981b) Light-dark and societal synchronization of respiratory and motor activities in laboratory mice, rats, guinea-pigs and quails. Comp Biochem Physiol 70A: 265–274Google Scholar
  110. Stupfel M, Perramon A, Gourlet V, Thierry H, Ali M, Lemercerre C (1983) Harmonic analysis of ultradian respiratory rhythms in four small laboratory vertebrates lit in LD 12:12. Comp Biochem Physiol 75A: 293–297Google Scholar
  111. Stupfel M, Gourlet V, Zeitoun G, Maral R, Bourut C, Chenu E (1984) Effects of B16 melanoma transplantation on the respiration of grouped C57 B1 female mice. Biomed Pharmacother 38: 389–397PubMedGoogle Scholar
  112. Stupfel M, Gourlet V, Court L, Demaria Pesce VH (1986a) Starvation and respiratory rhythmic behavior in groups of light-dark synchronized Sprague-Dawley rats. Physiol Behav 58: 265–274Google Scholar
  113. Stupfel M, Gourlet V, Court L (1986b) Effects of aging on circadian and ultradian respiratory rhythms of rats synchronized by a LD 12:12 lighting (L = 100 lux). Gerontology 32: 81–90PubMedGoogle Scholar
  114. Stupfel M, Gourlet V, Court L, Mestries J, Perramon A, Merat P (1987) Periodic analysis of ultradien (40 min < τ < 24h) respiratory variations in laboratory vertebrates of various circadian activities. Chronobiologia 14:365–375Google Scholar
  115. Stupfel M, Gourlet V, Perramon A, Monvoisin JL, Court L (1989a) Societal synchronization in groups of rats or quail submitted to various lighting regimens. Chronobiolgia 16: 215–228Google Scholar
  116. Stupfel M, Gourlet V, Court L, Perramon A, Mérat P, Lemercerre C (1989b) There are basic rest-activity ultradian rhythms of carbon dioxide emission in small laboratory vertebrates characteristic of each species. Prog Clin Biol Res 341A: 179–184Google Scholar
  117. Stupfel M, Gourlet V, Perramon A, Mérat P, Court L (1990) Ultradian and circadian compartmentalization of respiratory and metabolic exchanges in small laboratory vertebrates. Chronobiologia 17: 275–304PubMedGoogle Scholar
  118. Stupfel M, Gourlet V, Demaria Pesce VH, Plétan Y (1991) Are there behavioral sequelae following an acute carbon monoxide intoxication? An animal model. Int J Environ Health Res 1: 87–102Google Scholar
  119. Sulzman FM, Fuller CE, Moore-Ede MC (1978) Comparison of synchronization of primate circadian rhythms by light and food. Am J Physiol 234: R130–R135PubMedGoogle Scholar
  120. Szymanski JS (1918) Versuche über Aktivität und Ruhe bei Saüglingen. Pflugers Arch 172: 424–429Google Scholar
  121. Tannenbaum GS, Martin JB (1976) Evidence for an endogenous ultradian rhythm governing growth hormone secretion in the rat. Endocrinology 98: 562–570PubMedGoogle Scholar
  122. Termier H, Termier G (1979) Histoire de la terre. PUF, ParisGoogle Scholar
  123. Tobler I (1984) Evolution of sleep process: a phylogenetic approach. In: Borbély A, Valatx JL (eds) Sleep mechanisms. Springer, Berlin Heidelberg New York, pp 207–238Google Scholar
  124. Valatx JL (1984) Genetics as a model for studying the sleep-waking cycle. Exp Brain Res 8 [Suppl]: 135–143Google Scholar
  125. Vaughan GM, Bell R, De la Pena A (1979) Nocturnal plasma melatonin in humans: episodic pattern and influence of light. Neurosci Lett 14: 81–84PubMedGoogle Scholar
  126. Weigelin J (1868) Versuche über die Harnstoffauscheidung wahrend und nach der Muskelhetigkeit. Arch Anat Physiol Wiss Med, pp 207–223Google Scholar
  127. Weitzman ED (1975) Neuroendocrine pattern of secretion during the sleep-wake cycle of man. Prog Brain Res 42: 93–102PubMedGoogle Scholar
  128. Weitzman ED, Hellman L (1974) Temporal organization of the 24-hour pattern of the hypothalamic pituitary axis. In: Ferin M, Halberg F, Richart RM, Vandewiele RL (eds) Biorhythms and human reproduction. Wiley, New York, pp 371–395Google Scholar
  129. Weitzman ED, Fukushima D, Nogeire C (1974) Studies in ultradian rhythms in human sleep and associated neuroendocrine rhythms. In: Scheving LE, Halberg F, Pauly JE (eds) Chronobiology. Igaku Shoin Ltd, Tokyo, pp 503–505Google Scholar
  130. Werntz DA, Bickford RG, Bloom FE, Shannahoff-Khalsa DS (1983) Alternating cerebral hemispheric activity and the lateralization of autonomic nervous function. Human Neurobiol 2: 39–43Google Scholar
  131. Wever RA (1979) The circadian system of man. Springer, Berlin Heidelberg New York Wilson DM, Kripke DF, McClure DK, Greenburg GA (1977) Ultradian cardiac rhythms in surgical intensive care unit patients. Psychosom Med 39: 432–435Google Scholar
  132. Wilson DM, Kripke DF, McClure DK, Greenburg GA (1977) Ultradian cardiac rythms in surgical intensive care unit patients. Psychosen Med 39:432–435Google Scholar
  133. Wise PM, Weiland NG, Scarbrough K, Larson GH, Lloyd JM (1990) Contribution of changing rhythmicity of hypothalamic neurotransmitter function to female reproductive aging. Ann NY Acad Sci 592: 31–43PubMedGoogle Scholar
  134. Wollnik F, Döhler KD (1986) Effects of adult or perinatal hormonal environment on ultradian rhythms in locomotor activity of laboratory LEW/Ztm rats. Physiol Behav 38: 229–240PubMedGoogle Scholar
  135. Yates EF (1982) Outline of a physical theory of physiological systems. Can J Physiol Pharmacol 60: 217–248PubMedGoogle Scholar
  136. Yen SSC, Tsai CC, Naftolin F, Vandenberg G, Ajabor L (1972) Pulsatile patterns of gonadotropin release in subjects with and without ovarian function. J Clin Endocrinol Metab 34: 671–675PubMedGoogle Scholar
  137. Zepelin H, Rechschaffen A (1974) Mammalian sleep, longevity, and energy metabolism. Brain Behav Evol 10: 425–470PubMedGoogle Scholar
  138. Zung WWK, Wilson WP (1967) Sleep and dream patterns in twins. In: Wartis J (ed) Recent advances in biological psychiatry, vol IX. Plenum Press, New York, pp 119–130Google Scholar

Copyright information

© Springer-Verlag London Limited 1992

Authors and Affiliations

  • M. Stupfel

There are no affiliations available

Personalised recommendations