Skip to main content

Role of the Macrophage in HIV Encephalitis

  • Chapter
The Neuropathology of HIV Infection
  • 61 Accesses

Abstract

AIDS has caused a resurgence of interest in the macrophages of the central nervous system (CNS). The reason is that in the CNS HIV predominantly infects macrophages. This is in contrast to the lymphoreticular tissues, the other main site of attack, in which CD4 (helper) lymphocytes appear to be the main target of infection and damage, and macrophages and monocytes more subsidiary ones. In the CNS, macrophage infection is associated with pathological changes that, in some cases, can eventually become clinically overwhelming. Yet how these changes are brought about remains obscure. To understand the possible effects that macrophage infection with HIV may have on the rest of the CNS, we need to know what influences macrophages normally exert, and whether these break down or become pathologically altered when HIV infection occurs. Unfortunately, very little is known at present about normal functions of macrophages in the nervous system. Even the question of which cells in the nervous system belong to the macrophage lineage has long been, and to a lesser extent remains, a matter of controversy. The aims of this chapter are first to outline recent views on the microscopic anatomy, immunocytochemistry and function of macrophages in the CNS, and second to summarize the effect that HIV has on this cell population and the ways in which this may lead to CNS damage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abrams DI, Kiprov DO, Goedert JJ et al. (1986) Antibodies to human T-lymphotropic virus type III and development of acquired immune deficiency syndrome in homosexual men presenting with immune thrombocytopenia. Ann Intern Med 104:47–50.

    PubMed  CAS  Google Scholar 

  • Adams CWM, Poston RN, Buk SJ. (1989) Pathology, histochemistry and immunocytochemistry of lesions in acute multiple sclerosis. J Neurol Sci 92:291–306.

    Article  PubMed  CAS  Google Scholar 

  • Adrian EK Jr. (1968) Cell division in injured spinal cord. Am J Anat T23:501–20.

    Article  Google Scholar 

  • Adrian EK Jr, Walker BE. (1962) Incorporation of thymidine H3 by cells in normal and injured mouse spinal cord. J Neuropathol Exp Neurol 21:597–609.

    Article  PubMed  Google Scholar 

  • Adrian EK Jr, Williams MG, George FC. (1978) Fine structure of reactive cells in injured nervous tissue labelled with 3H-thymidine injected before injury. J Comp Neurol 180:815–39.

    Article  PubMed  Google Scholar 

  • Andersson MA, Bergstrom TB, Blomstrand C et al. (1988) Increasing intrathecal lymphocytosis and immunoglobulin G production in neurologically asymptomatic HIV-I infection. J Neuroimmunol 19:291–304.

    Article  PubMed  CAS  Google Scholar 

  • Barōn M, Gallego A. (1972) The relation of the microglia with the pericytes in the rat cerebral cortex. Z Zellforsch 128:42–57.

    Article  PubMed  Google Scholar 

  • Blakemore WF. (1975) The ultrastructure of normal and reactive microglia. Acta Neuropath (Berl) 6 (suppl):273–8.

    Google Scholar 

  • Blinzinger K, Kreutzberg G. (1968) Displacement of synaptic terminal from regenerating motoneurons by microglial cells. Z Zellforsch 85:145–57.

    Article  PubMed  CAS  Google Scholar 

  • Brierley JB, Brown AW. (1982) The origin of lipid phagocytes in the central nervous system 1. The intrinsic microglia. J Comp Neurol 211:397–406.

    Article  PubMed  CAS  Google Scholar 

  • Budka H. (1986) Multinucleated giant cells in brain: a hallmark of the acquired immune deficiency syndrome (AIDS). Acta Neuropathol (Berl) 69:253–8.

    Article  CAS  Google Scholar 

  • Budka H, Costanzi G, Cristina S et al. (1987) Brain pathology induced by infection with the human immunodeficiency virus (HIV). A histological, immunocytochemical and electron microscopical study of 100 autopsy cases. Acta Neuropathol (Berl) 75: 185–98.

    Article  CAS  Google Scholar 

  • Cheng-Mayer C, Rutka Y, Rosenblum M et al. (1987) Infection of cultured human brain cells with the human immunodeficiency virus (HIV). Proc Natl Acad Sci USA 84:3526–30.

    Article  PubMed  CAS  Google Scholar 

  • Chiodi F, Fuerstenberg S, Gildlund M et al. (1987) Infection of brain-derived cells with the human immunodeficiency virus. J Virol 61: 1244–7.

    PubMed  CAS  Google Scholar 

  • Clapham P, Weber J, Whitby D et al. (1989) Soluble CD4 blocks the infectivity of diverse strains on HIV and SIV for T cells and monocytes but not for brain and muscle cells. Nature 337:368–70.

    Article  PubMed  CAS  Google Scholar 

  • Cravioto H, Feigin I. (1959) Non-infectious granulomatous angiitis with a predilection for the nervous system. Neurology 9:599–609.

    PubMed  CAS  Google Scholar 

  • Daar AS, Fuggle SV, Fabre JW et al. (1984) The detailed distribution of MHC Class II antigens in normal human organs. Transplantation 38:293–8.

    Article  PubMed  CAS  Google Scholar 

  • Dalgliesh A, Beverley P, Clapham P et al. (1984) The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 312:763–7.

    Article  Google Scholar 

  • Davey FR, Cordell JL, Erber WN et al. (1988) A monoclonal antibody (Y1/82A) with specificity towards peripheral blood monocytes and tissue macrophages. J Clin Pathol 41:753–8.

    Article  PubMed  CAS  Google Scholar 

  • Dickson OW. (1986) Multinucleated giant cells in acquired immunodeficiency syndrome encephalopathy. Origin from endogenous microglia? Arch Pathol Lab Med 110:967–8.

    PubMed  CAS  Google Scholar 

  • Dolman CL. (1985) Microglia. In: Davis RL, Robertson OM, ed. Textbook of neuropathology. Williams and Wilkins: Baltimore, 117–37.

    Google Scholar 

  • Doyle PW, Gibson G, Dolman CL. (1983) Herpes zoster ophthalamicus with contralateral hemiplegia: identification of cause. Ann Neurol 14:84–85.

    Article  PubMed  CAS  Google Scholar 

  • Duchen LW. (1984) General pathology of neurons and neuroglia. In: Adams JH, Corsellis JAN, Duchen LW, ed. Greenfield’s neuropathology, 4th edn. Arnold: London, 1–52.

    Google Scholar 

  • Elovaara I, Iiavanainen M, Valle S-L et al. (1987) CSF protein and cellular profiles in various stages of HIV infection related to neurological manifestations. J Neurol Sci 78:331–42.

    Article  PubMed  CAS  Google Scholar 

  • Epstein LG, Sharer LR, Cho E-S et al. (1985) HTLV-III/LAV-like retrovirus particles in the brains of patients with AIDS encephalopathy. AIDS Res Hum Retroviruses 1:447–54.

    CAS  Google Scholar 

  • Esiri MM, Booss J. (1984) Comparison of methods to identify microglial cells and macrophages in the human central nervous system. J Clin Pathol 37: 150–6.

    Article  PubMed  CAS  Google Scholar 

  • Esiri MM, Gay D. (1990) Annotation: immunological and neuropathological significance of the Virchow-Robin space. J Neurol Sci 100:3–8.

    Article  PubMed  CAS  Google Scholar 

  • Esiri MM, Reading MC. (1987) Macrophage populations associated with multiple sclerosis plaques. Neuropathol Appl Neurobiol 13:451–65.

    Article  PubMed  CAS  Google Scholar 

  • Esiri MM, Oppenheimer DR, Brownell B et al. (1982) Distribution of measles antigen and immunoglobulincontaining cells in the CNS in subacute sclerosing panencephalitis and atypical measles encephalitis. J Neurol Sci 53:29–43.

    Article  PubMed  CAS  Google Scholar 

  • Esiri MM, Scaravilli F, Millard PM et al. (1989) Neuropathology of HIV infection in haemophiliacs: comparative necropsy study. Br Med J 299: 1312–15.

    Article  CAS  Google Scholar 

  • Esiri MM, Al-Izzi MS, Reading MC. (1991a) Macrophages, microglial cells and HLA-DR antigens in foetal and infant human brain. J Clin Pathol 101:59–72.

    CAS  Google Scholar 

  • Esiri MM, Morris CS, Millard PR. (1991b) Fate of oligodendrocytes in HIV-1 infection. AIDS 5:1081–8.

    Article  PubMed  CAS  Google Scholar 

  • Evans LA, McHugh TM, Stites DP et al. (1987) Differential ability of human immunodeficiency virus isolates to productively infect human cells. J Immunol 138:3415–18.

    PubMed  CAS  Google Scholar 

  • Fauci AS. (1988) The human immunodeficiency virus: infectivity and mechanisms of pathogenesis. Science 239:617–22.

    Article  PubMed  CAS  Google Scholar 

  • Franklin WA, Mason DY, Pulford K et al. (1986) Immunohistological analysis of human mononuclear phagocytes and dendritic cells using monoclonal antibodies. Lab Invest 54: 322–35.

    PubMed  CAS  Google Scholar 

  • Fujita S, Kitamura T. (1976) Origin of brain macrophages and the nature of microglia. In: Zimmerman HM, ed. Progress in neuropathology, vol 3. Grune and Stratton: London, 1–50.

    Google Scholar 

  • Fujita S, Tsuchihashi Y, Kitamura T. (1981) Origin, morphology and function of the microglia. Prog Clin Biol Res 59A:141–50.

    PubMed  CAS  Google Scholar 

  • Gabuzda DH, Ho DO, de la Monte SM et al. (1986) Immunohistochemical identification of HTLV-III antigen in brains of patients with AIDS. Ann Neurol 20:289–95.

    Article  PubMed  CAS  Google Scholar 

  • Gartner S, Markovitz P, Markovitz D et al. (1986) Virus isolation from and identification of HTLV-III/LAV producing cells in brain tissue from a patient with AIDS. JAMA 256:2365–71.

    Article  PubMed  CAS  Google Scholar 

  • Gendelman HE, Phelps W, Feigenbaum L et al. (1986) Transactivation of the human immunodeficiency virus long terminal repeat sequence by DNA viruses. Proc Natl Acad Sci USA 83:9759–63.

    Article  PubMed  CAS  Google Scholar 

  • Gendelman HE, Leonard JM, Dutko FJ et al. (1988) Immunopathogenesis of human immunodeficiency virus infection in the central nervous system. Ann Neurol 23 (suppl):578–81.

    Article  Google Scholar 

  • Gendelman HE, Orenstein JM, Baca LM et al. (1989) The macrophage in the persistence and pathogenesis of HIV infection. AIDS 3:475–95.

    Article  PubMed  CAS  Google Scholar 

  • Gordon S. (1986) Biology of the marcrophage. J Cell Sci Suppl 4:267–86.

    PubMed  CAS  Google Scholar 

  • Goudsmit J, Wolters EC, Bakker M et al. (1986) Intrathecal synthesis of antibodies to HTLV-III in patients without AIDS or AIDS-related complex. Br Med J 292:1231–4.

    Article  CAS  Google Scholar 

  • Grafe MR, Wiley CA. (1989) Spinal cord and peripheral nerve pathology in AIDS: the roles of cytomegalovirus and human immunodeficiency virus. Ann Neurol 25: 561–6.

    Article  PubMed  CAS  Google Scholar 

  • Gyorkey F, Melnick JL, Gyorkey P. (1987) Human immunodeficiency virus in brain biopsies of patients with AIDS and progressive encephalopathy. J Infect Dis 155:870–6.

    Article  PubMed  CAS  Google Scholar 

  • Haase AT. (1986) Pathogenesis of lentivirus infections. Nature 322: 130–6.

    Article  PubMed  CAS  Google Scholar 

  • Harouse JM, Kunsch C, Hartle HT et al. (1989) CD4-independent infection of human neural cells by human immunodeficiency virus type I. J Virol 63: 2527–33.

    PubMed  CAS  Google Scholar 

  • Hauser SL, Bhan AK, Gilles FH et al. (1983) Immunohistochemical staining of human brain with monoclonal antibodies that identify lymphocytes, monocytes and the Ia antigen. J Immunol 5:197–205.

    CAS  Google Scholar 

  • Hayes GM, Woodroofe MN, Cuzner ML. (1987) Microglia are the major cell type expressing MHC Class II in human white matter. J Neurol Sci 80:25–37.

    Article  PubMed  CAS  Google Scholar 

  • Heumann R, Lindholm D, Bandtlow C et al. (1987) Differential regulation of mRNA encoding nerve growth factor and its receptor in rat sciatic nerve during development, degeneration and regeneration: role of macrophages. Proc Natl Acad Sci USA 84:8735–9.

    Article  PubMed  CAS  Google Scholar 

  • Ho DO, Pomerantz RJ, Kaplan JC. (1987) Pathogenesis of infection with human immunodeficiency virus. N Engl J Med 317:278–86.

    Article  CAS  Google Scholar 

  • Hortega P del Rio. (1919) ‘Tracer elemento’ de los centros nervosos. I: La microglia en estado normal. II: Intervencion de la microglia en los procesos patologicos. III: Naturaleza probable de la microglia. Biol Sci Exp Biol 9:69–120.

    Google Scholar 

  • Hortega P del Rio. (1932) Microglia. In: Penfield W, ed. Cytology and cellular pathology of the nervous system. Hoeber: New York, 482–534.

    Google Scholar 

  • Huntington HW, Terry RD. (1966) The origin of reactive cells in cerebral stab wounds. J Neuropathol Exp Neurol 25:646–53.

    Article  PubMed  CAS  Google Scholar 

  • Imamoto K, Leblond CP. (1978) Radioautographic investigation of gliogenesis in the corpus callosum of young rats. II Origin of microglial cells. J Comp Neurol 180: 13963.

    Article  PubMed  CAS  Google Scholar 

  • Johnson RT. (1982) Viral infections of the nervous system. Raven Press: New York.

    Google Scholar 

  • Johnston RB. (1988) Monocytes and macrophages. N Engl J Med 318:747–52.

    Article  PubMed  Google Scholar 

  • Kennedy PGE, Narayan O, Ghotbi Z et al. (1985) Persistent expression of Ia antigen and viral genome in visna-maedi virus-induced inflammatory cells. J Exp Med 162:1970–28.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy PGE, Narayan O, Zink MC et al. (1989) The pathogenesis of visna, a lentivirus induced immunopathologic disease of the central nervous system. In: Gilden DH, Lipton HLK, ed. Clinical and molecular aspects of neurotropic virus infection. Kluwer Academic Publishers: Amsterdam, 393–421.

    Chapter  Google Scholar 

  • King JS. (1968) A light electron microscopic study of perineuronal glial cells and processes in the rabbit neocortex. Anat Rec 161:111–24.

    Article  PubMed  CAS  Google Scholar 

  • Kitamura T. (1973) The origin of brain macrophages: some considerations on the microglia theory of del Rio Hortega, Acta Pathol Jpn 23: 11–26.

    PubMed  CAS  Google Scholar 

  • Kitamura T. (1980) Dynamic aspects of glial reactions in altered brain. Path Res Pract 168:301–43.

    PubMed  CAS  Google Scholar 

  • Kitamura T, Fujita S. (1975) The role of haematogenous cells in alterations of mouse brains following stab wounding, inoculation of Japanese encephalitis virus and retrograde degeneration of facial nucleus. In: Kornyey ST, Tariska ST, Gosztomyc G, ed. VII Int Congr Neuropathol Exc Med 1:37–40.

    Google Scholar 

  • Kitamura T, Hattori H, Fujita S. (1972) Autoradiographic studies on histogenesis of brain macrophages in the mouse. J Neuropathol Exp Neurol 31:502–18.

    Article  PubMed  CAS  Google Scholar 

  • Klatzmann D, Gluckman JC. (1986) HIV infection: facts and hypotheses. Immunol Today 7:291–6.

    Article  Google Scholar 

  • Klatzmann D, Champagne E, Clamaret S et al. (1984) Tlymphocyte T4 molecule behaves as a receptor for human retrovirus LAV. Nature 312:767–8.

    Article  PubMed  CAS  Google Scholar 

  • Koenig S, Gendelman HE, Orenstein JM et al. (1986) Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy. Science 233: 1089–93.

    Article  PubMed  CAS  Google Scholar 

  • Konigsmark BW, Sidman RL. (1963) Origin of brain macrophages in the mouse. J Neuropathol Exp Neurol 22:643–76.

    Article  PubMed  CAS  Google Scholar 

  • Koyanagi Y, Miles S, Mitsuyasu RT et al. (1987) Dual infection of the central nervous system by AIDS viruses with distinct cellular tropisms. Science 236:819–22.

    Article  PubMed  CAS  Google Scholar 

  • Kruger L, Maxwell DS. (1966) Electron microscopy of oligodendrocytes in normal rat cerebrum. Am J Anat 118:411–36.

    Article  PubMed  CAS  Google Scholar 

  • Lampson LA, Hickey WF. (1986) Monoclonal antibody analysis of MHC expression in human biopsies: tissue ranging from ‘histologically normal’ to that showing different levels of glial tumour involvement. J Immunol 136:4054–62.

    PubMed  CAS  Google Scholar 

  • Lechtenberg R, Sher JH. (1988) AIDS in the nervous system. Churchill Livingstone: New York.

    Google Scholar 

  • Lindholm D, Heumann R, Meyer M et al. (1987) Interleukin1 regulates synthesis of nerve growth factor in non-neuronal cells of rat sciatic nerve. Nature 330:658–9.

    Article  PubMed  CAS  Google Scholar 

  • Ling EA. (1980) Transformation of monocytes into amoeboid microglia and into microglia in the corpus callosum of postnatal rats, as shown by labelling monocytes by carbon particles. J Anat 128:847–58.

    Google Scholar 

  • Linneman CC, Alvira MM. (1980) Pathogenesis of varicellazoster angiitis in the CNS. Arch Neurol 37:239–40.

    Article  Google Scholar 

  • Maier H, Budka H, Lassmann H et al. (1989) Vacuolar myelopathy with multinucleated giant cells in the acquired immune deficiency syndrome. Acta Neuropathol 78:497–503.

    Article  PubMed  CAS  Google Scholar 

  • Mannoji H, Vegeer H, Becker LE. (1986) A specific histochemical marker (lectin Ricinus communis agglutinin1) for normal human microglia, and application to routine histopathology. Acta Neuropathol (Berl) 71:341–3.

    Article  CAS  Google Scholar 

  • Matsuomoto Y, Watabe K, Ikuta F. (1985) Immunohistochemical study on neuroglia identified by the monoclonal antibody against a macrophage differentiation antigen (Macl). J Neuroimmunol 9:379–89.

    Article  Google Scholar 

  • Matthews MA, Kruger L. (1973) Electron microscopy of nonneuronal cellular changes accompanying neural degeneration in thalamic nuclei of the rabbit II reactive elements within the neuropil. J Comp Neurol 148:313–46.

    Article  PubMed  CAS  Google Scholar 

  • Maxwell DS, Kruger L. (1965) Small blood vessels and the origin of phagocytes in the rat following heavy particle irradiation. Exp Neurol 12:33–54.

    Article  PubMed  CAS  Google Scholar 

  • Meyenhofer MF, Epstein LG, Cho E-S et al. (1987) Ultrastructural morphology and intracellular production of human immunodeficiency virus (HIV) in brain. J Neuropathol Exp Neurol 46:474–84.

    Article  PubMed  CAS  Google Scholar 

  • Mirra SS, del Rio C. (1989) The fine structure of acquired immunodeficiency syndrome encephalopathy. Arch Pathol Lab Med 113:858–65.

    PubMed  CAS  Google Scholar 

  • Mori S, Leblond CP. (1969) Identification of microglia in light and electron microscopy. J Comp Neurol 135:57–79.

    Article  PubMed  CAS  Google Scholar 

  • Morris L, Distenfeld A, Amorosi E et al. (1982) Autoimmune thrombocytopenic purpura in homosexual men. Ann Intern Med 96:714–17.

    PubMed  CAS  Google Scholar 

  • Murabe Y, Sano Y. (1981) Thiamine pyrophosphatase activity in the plasma membrane of microglia. Histochemistry 71:45–52.

    Article  PubMed  CAS  Google Scholar 

  • Murabe Y, Sano Y. (1982a) Morphological studies on neuroglia. VI Postnatal development of microglial cells. Cell Tissue Res 225:469–85.

    Article  PubMed  CAS  Google Scholar 

  • Murabe Y, Sano Y. (1982b) Morphological studies on neuroglia. V Microglial cells in the cerebral cortex of the rat with special reference to their possible involvement in synaptic function. Cell Tissue Res 223:493–506.

    Article  PubMed  CAS  Google Scholar 

  • Murray HW, Rubin BY, Masur H et al. (1984) Impaired production of lymphocytes and immune (gamma) interferon in the acquired immunodeficiency syndrome. N Engl J Med 310:883–9.

    Article  PubMed  CAS  Google Scholar 

  • Murray HW, Scavuzzo D, Jacobs JL et al. (1987) In vitro and in vivo activation of human mononuclear phagocytes by interferon - γ: studies with normal and AIDS monocytes. J Immunol 138:2457–62.

    PubMed  CAS  Google Scholar 

  • Narayan O, Strandberg JD, Griffin DE et al. (1983) Aspects of the pathogenesis of visna in sheep. In: Mims CA, Cuzner MC, Kelly RE, ed. Viruses and demyelinating disease. Academic Press: London, 125–40.

    Google Scholar 

  • Nurick S, Blackwood W, Mair WGP. (1972) Giant cell granulomatous angiitis of the central nervous system. Brain 95:133–42.

    Article  PubMed  CAS  Google Scholar 

  • Oemichen M. (1978) Mononuclear phagocytes in the central nervous system. Springer-Verlag: Berlin.

    Google Scholar 

  • Oemichen M. (1982) Functional properties of microglia. In: Smith WT, Cavanagh JB, ed. Recent advances in neuropathology, vol 2. Churchill Livingstone: London, 83–107.

    Google Scholar 

  • Oemichen M, Huber H. (1976) Reactive microglia with membrane features of mononuclear phagocytes. J Neuro pathol Exp Neurol 35:30–9.

    Article  Google Scholar 

  • Oemichen M, Wietholter H, Greaves MF. (1979) Immunological analysis of human microglia: lack of monocytic and lymphoid membrane differentiation antigens. J Neuropathol Exp Neurol 38:99–103.

    Article  Google Scholar 

  • Oemichen M, Wietholter H, Gencic M. (1980) Cytochemical markers for mononuclear phagocytes as demonstrated in reactive microglia and globoid cells. Acta Histochem 66: 243–52.

    Google Scholar 

  • Perry VH, Gordon S. (1989) Resident macrophages of the central nervous system: modulation of phenotype in relation to a specialised microenvironment. In: Goetzl EJ, Spector NH, ed. Neuroimmune networks: physiology and diseases. Alan Liss: New York, 119–25.

    Google Scholar 

  • Perry VH, Hume DA, Gordon S. (1985) Immunohistochemical localisation of macrophages and microglia in the adult and developing mouse brain. Neuroscience 15: 313–26.

    Article  PubMed  CAS  Google Scholar 

  • Persson L. (1976) Cellular reactions to small cerebral wounds in the rat frontal lobe. An ultrastructural study. Virch Arch [B] 22:21–37.

    CAS  Google Scholar 

  • Popovic M, Sarngadharan MG, Read E. (1984) Detection, isolation and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and preAIDS. Science 224:497–500.

    Article  PubMed  CAS  Google Scholar 

  • Popovic M, Mellert W, Eyfle V et al. (1988) Role of mononuclear phagocytes and accessory cells in human immunodeficiency virus type I infection of the brain. Ann Neurol 23 (suppl):574–7.

    Article  Google Scholar 

  • Portegies P, de Gans T, Lange JMA et al. (1989) Declining incidence of AIDS dementia complex after introduction of zidovudine treatment. Br Med J 299:819–21.

    Article  CAS  Google Scholar 

  • Pow DV, Perry VH, Morris JF et al. (1989) Microglia in the neurohypophysis associate with and endocytose terminal portions of neurosecretory neurons. Neuroscience 33:567–78.

    Article  PubMed  CAS  Google Scholar 

  • Pumarola-Sune T, Navia BA, Cordon-Cardo C et al. (1987) HIV antigen in the brains of patients with the AIDS dementia complex. Ann Neurol 21:490–6.

    Article  PubMed  CAS  Google Scholar 

  • Resnick L, di Marzo-Veronese F, Schupbach J et al. (1985) Intra-blood-brain-barrier synthesis of HTLV-III-specific IgG in patients with neurologic symptoms associated with AIDS or AIDS-related complex. N Engl J Med 313:1498–1504.

    Article  PubMed  CAS  Google Scholar 

  • Resnick L, Berger JR, Shapshak P et al. (1988) Early penetration of the blood-brain-barrier by HIV. Neurology 38:9–14.

    PubMed  CAS  Google Scholar 

  • Rhodes RH, Ward JM. (1989) Immunohistochemistry of human immunodeficiency virus in the central nervous system and an hypothesis concerning the pathogenesis of AIDS meningo-encephalomyelitis. In: Rotterdam H, Sommers SC, ed. Progress in AIDS pathology. vol 1. Field and Wood: Philadelphia, 167–79.

    Google Scholar 

  • Rosenblum M, Scheck AC, Cronin K et al. (1989) Dissociation of AIDS-related vacuolar myelopathy and productive HIV-1 infection of the spinal cord. Neurology 39:892–6.

    PubMed  CAS  Google Scholar 

  • Rübsamen-Waigmann H, Becker WB, Helm EB et al. (1986) Isolation of variants of lymphocytopathic retroviruses from the peripheral blood and cerebrospinal fluid of patients with ARC or AIDS. J Med Virol 19:335–44.

    Article  PubMed  Google Scholar 

  • Sandlin R, Alexander WS, Hornabrook RW et al. (1979) Granulomatous angiitis of the CNS. Arch Neurol 36:433–5.

    Article  Google Scholar 

  • Schelper RL, Adrian EK Jr. (1980) Non-specific esterase activity in reactive cells in injured nervous tissue labelled with 3H-thymidine or 125Iododeoxyuridine injected before injury. J Comp Neurol 194:829–44.

    Article  PubMed  CAS  Google Scholar 

  • Schelper RL, Adrian EK Jr. (1986) Monocytes become macrophages; they do not become microglia; a light and electron microscopic autoradiographic study using 125-Iododeoxyuridine. J Neuropathol Exp Neurol 45:1–19.

    Article  PubMed  CAS  Google Scholar 

  • Schlesinger L, Musson RA, Johnston RB Jr. (1984) Functional and biochemical studies of multinucleated giant cells derived from the culture of human monocytes. J Exp Med 159:1289–94.

    Article  PubMed  CAS  Google Scholar 

  • Schrier RD, Nelson JA, Oldstone MD. (1985) Detection of human cytomegalovirus in peripheral blood lymphocytes in a natural infection. Science 230: 1048–51.

    Article  PubMed  CAS  Google Scholar 

  • Sharer LR, Cho E-S, Epstein LG. (1985) Multinucleated giant cells and HIV-III in AIDS encephalopathy. Hum Pathol 16:760.

    Article  PubMed  CAS  Google Scholar 

  • Smith I, Howells DW, Kendall B et al. (1987) Folate deficiency and demyelination in AIDS. Lancet ii:215.

    Article  Google Scholar 

  • Sobel RA, Ames MB. (1988) Major histocompatibility complex molecular expression in the human central nervous system; immunohistochemical analysis of 40 patients. J Neuropathol Exp Neurol 41:19–28.

    Article  Google Scholar 

  • Stoler MH, Eskin TA, Benn S et al. (1986) Human T-cell lymphotropic virus type III infection of the central nervous system. A preliminary in situ analysis. JAMA 256:2360–4.

    Article  PubMed  CAS  Google Scholar 

  • Stowring L, Haase AT, Petursson G et al. (1985) Detection of visna virus antigens and RNA in glial cells in foci of demyelination. Virology 141:311–18.

    Article  PubMed  CAS  Google Scholar 

  • Sumner BEH. (1975) A quantitative analysis of boutons of different types of synapses in normal and injured hypoglossal nuclei. Exp Neurol 49:406–17.

    Article  PubMed  CAS  Google Scholar 

  • Sumner BEH. (1977) Responses in the hypoglossal nucleus to delayed regeneration of the transected hypoglossal nerve: a quantitative ultrastructural study. Exp Brain Res 29:219–31.

    Article  PubMed  CAS  Google Scholar 

  • Thomas ED, Ramberg RE, Sale GE et al. (1976) Direct evidence for a bone marrow origin of the alveolar macrophage in man. Science 192:1016–18.

    Article  PubMed  CAS  Google Scholar 

  • Torvik A, Soreide AJ. (1975) The perineuronal glial reaction after axotomy. Brain Res 95:519–29.

    Article  PubMed  CAS  Google Scholar 

  • Tsuchihashi Y, Kitamura T, Fujita S. (1981) Immunofluorescence studies of monocytes in the injured rat brain. Acta Neuropathol (Berl) 53:213–19.

    Article  CAS  Google Scholar 

  • Twigg HL, Weissler JC, Yoffe B, Ball EJ, Lipscomb MA. (1991) Monocyte accessory cell formation in patients infected with the human immunodeficiency virus. Clin Immunol Immunopathol 59:436–48.

    Article  PubMed  Google Scholar 

  • Vaughn JE, Peters A. (1968) A third neuroglial cell type. An electron microscopic study. J Comp Neurol 133:269–88.

    Article  PubMed  CAS  Google Scholar 

  • Vazeux R, Brousse N, Jarry A et al. (1987) AIDS subacute encephalitis; identification of HIV-infected cells. Am J Pathol 126:403–10.

    PubMed  CAS  Google Scholar 

  • Vinters HV, Kwok MK, Ho HW et al. (1989) Cytomegalovirus in the nervous system of patients with the acquired immunodeficiency syndrome. Brain 112:245–68.

    Article  PubMed  Google Scholar 

  • Vorbrodt AW, Wisniewski HM. (1982) Plasmalemma-bound nucleoside diphosphatase as a cytochemical marker of central nervous system (CNS) mesodermal cells. J Histochem Cytochem 30:418–24.

    Article  PubMed  CAS  Google Scholar 

  • Wagner HJ, Pilgrim C, Brandl J. (1974) Penetration and removal of horseradish peroxidase injected into cerebrospinal fluid. Role of cerebral perivascular spaces, endothelium and microglia. Acta Neuropathol (Berl) 27:299–315.

    Article  CAS  Google Scholar 

  • Ward JM, O’Leary TJ, Baskin GB et al. (1987) Immunohistochemical localisation of human and simian immunodeficiency viral antigens in fixed tissue sections. Am J Pathol 127:199–205.

    PubMed  CAS  Google Scholar 

  • Watabe K, Saida T, Kim SU. (1989) Human and simian glial cells infected by human T-lymphotropic virus type I in culture. J Neuropathol Exp Neurol 48:610–19.

    Article  PubMed  CAS  Google Scholar 

  • Webster A, Lee CA, Cook DG et al. (1989) Cytomegalovirus infection and progression towards AIDS in haemophiliacs with human immunodeficiency virus infection. Lancet ii: 63–6.

    Article  Google Scholar 

  • Weinberg JB, Hobbs MM, Misukomis MA. (1984) Recombinant human γ-interferon induces human monocyte polykaryon formation. Proc Natl Acad Sci (USA) 81:4554–7.

    Article  CAS  Google Scholar 

  • Weiser B, Peress N, La Neve et al. (1990) Human immunodeficiency virus type 1 expression in the central nervous system correlates directly with extent of disease. Proc Natl Acad Sci USA 87:3997–4001.

    Article  PubMed  CAS  Google Scholar 

  • Wiley CA, Nelson JA. (1990) Role of human immunodeficiency virus and cytomegalovirus in AIDS encephalitis. Am J Pathol 133:73–81.

    Google Scholar 

  • Wiley CA, Schrier RD, Nelson JA et al. (1986a) Cellular localisation of human immunodeficiency virus infection within the brains of acquired immune deficiency syndrome patients. Proc Natl Acad Sci USA 83:7089–93.

    Article  PubMed  CAS  Google Scholar 

  • Wiley CA, Schrier RD, Denaro FJ et al. (1986b) Localisation within the CNS of cytomegalovirus proteins and genome during fulminant infection in an AIDS patient. J Neuropathol Exp Neurol 45:127–39.

    Article  PubMed  CAS  Google Scholar 

  • Wood GW, Gollahon KA, Tilzer SA et al. (1979) The failure of microglia in normal brain to exhibit mononuclear phagocyte markers. J Neuropathol Exp Neurol 38:369–76.

    Article  PubMed  CAS  Google Scholar 

  • Woodroofe MN, Bellamy AS, Feldman M et al. (1986) Immunocytochemical characterisation of the immune reaction in the nervous system in multiple sclerosis: possible role for microglia in lesion growth. J Neurol Sci 74: 135–52.

    Article  PubMed  CAS  Google Scholar 

  • Yarchoan R, Berg G, Bronwers P et al. (1987) Response of human immunodeficiency-virus-associated neurological disease to 31 azido 31 μ deoxythymidine. Lancet i: 132–5.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag London Limited

About this chapter

Cite this chapter

Esiri, M.M. (1993). Role of the Macrophage in HIV Encephalitis. In: Scaravilli, F. (eds) The Neuropathology of HIV Infection. Springer, London. https://doi.org/10.1007/978-1-4471-1957-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1957-9_11

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1959-3

  • Online ISBN: 978-1-4471-1957-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics