Skip to main content

Models of the Atrioventricular Node

  • Chapter
  • 270 Accesses

Abstract

The mechanism of the ventricular response in atrial fibrillation has long been a puzzle, the answer to which lies in the working of the atrioventricular node. Any attempted solution must be consistent with, and preferably also illuminate, the known behaviour of the atrioventricular node in sinus rhythm. Essentially, the problem is mathematical: how to convert the distribution and sequence of impulses arriving at the atrioventricular node to those of the impulses leaving the node. However, the mathematical solution has to correspond to the known electrophysiological properties of the conducting system. The main features that need to be accommodated in a model are as follows: reduction of the number of impulses entering the node to the number leaving the node; an essentially random sequence of R-R intervals with the distribution properties found in atrial fibrillation, including the presence of narrow peaks on the histogram of R-R intervals; a relatively long atrioventricular conduction interval in sinus rhythm; rapid change of atrioventricular delay with change of ventricular rate; and a negative relation between cycle length of conducted impulses and the effective refractory period of the atrioventricular node.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aberg H, Furberg B (1975) Atrial activity during exercise in patients with atrial flutter or atrial fibrillation. Ups J Med Sei 80: 20–3

    Article  CAS  Google Scholar 

  • Aberg H, Nordgren L (1970) The effect of digitalis on the atrial activity in atrial fibrillation. Acta Soc Med Ups 75: 13–18

    PubMed  CAS  Google Scholar 

  • Billette J (1981) Short time constant for rate-dependent changes of atrioventricular conduction in dogs. Am J Physiol 241: H28–33

    Google Scholar 

  • Billette J, Nadeau RA, Roberge F (1974) Relation between the minimum RR interval during atrial fibrillation and the functional refractory period of the AV junction. Cardiovasc Res 8: 347–51

    Article  PubMed  CAS  Google Scholar 

  • Cohen RJ, Berger RD, Dushane TE (1983) A quantitative model for the ventricular response during atrial fibrillation. IEEE Trans Biomed Eng 30: 769–81

    Article  PubMed  CAS  Google Scholar 

  • Cohen SI, Lau SH, Berkowitz WD, Damato AN (1970) Concealed conduction during atrial fibrillation. Am J Cardiol 25: 416–19

    Article  PubMed  CAS  Google Scholar 

  • Curry PVL (1975) Fundamentals of arrhythmias: Modern methods of investigation. In: Krikler DM, Goodwin JF (eds) Cardiac arrhythmias. The modern electrophysiological approach. Saunders, Philadelphia, pp 39–80

    Google Scholar 

  • David D, Lang RM, Neumann A, Borrow KM, Akselrod S, Mor-Avi V (1990) Parasympathetically modulated anti-arrhythmic action of lidocaine in atrial fibrillation. Am Heart J 119: 1061–8

    Article  PubMed  CAS  Google Scholar 

  • Dorveaux L, Twidale N, Tonkin A (1988) Direct identification of parameters in a mathematical model describing conduction through the atrioventricular node. Int J Biomed Comp 23: 69–76

    Article  CAS  Google Scholar 

  • Dreifus LS, Mazgalev T (1988) “Atrial paralysis”: does it explain the irregular ventricular rate during atrial fibrillation? J Am Coll Cardiol 11: 546–7

    Article  PubMed  CAS  Google Scholar 

  • Fillette F, Fontaine G, Frank R, Grosgogeat Y (1983) Ventricular response in atrial fibrillation: normal conduction, consequences of conduction disorders and pre-excitation syndromes. Therapeutic implications. Ann Cardiol Angeiol (Paris) 32: 7–19

    CAS  Google Scholar 

  • Gavrilescu S, Dragulescu SI, Streian C, Luca C (1976) Monophasic action potentials of the right atrium during atrial fibrillation in man. Cor Vasa 18: 264–70

    PubMed  CAS  Google Scholar 

  • Glass L, Guevara MR, Belair J, Shrier A (1984) Global bifurcations of a periodically forced biological oscillator. Physiol Rev 29: 1348–57

    Google Scholar 

  • Glass L, Shrier A, Belair J (1986) Chaotic cardiac rhythms. In: Holden AV (ed) Chaos. Manchester University Press, Manchester, pp 237–56

    Google Scholar 

  • Goldberger AL, Bhargava V, West BJ, Mandell AJ (1985) Nonlinear dynamics of the heartbeat. II Subharmonic bifurcations of the cardiac interbeat interval in sinus node disease. Physica 17D: 207–14

    Article  Google Scholar 

  • Goldstein RE, Barnett GO (1967) A statistical study of the ventricular irregularity of atrial fibrillation. Comp Biomed Res 1: 146–61

    Article  CAS  Google Scholar 

  • Grant RP (1956) The mechanism of A-V arrhythmias with an electronic analogue of the human A-V node. Am J Med 20: 334–44

    Article  PubMed  CAS  Google Scholar 

  • Guevara MR, Glass L (1982) Phase locking, period doubling bifurcations and chaos in a mathematical model of a periodically driven oscillator: A theory for the entrainment of biological oscillators and the generation of cardiac dysrhythmias. J Math Biol 14: 1–23

    Article  PubMed  CAS  Google Scholar 

  • Hashida E, Yoshitani N, Tasaki T (1978) A study on the irregularity of the sequence of R-R intervals in chronic atrial fibrillation in man based on the time series analysis and information theory. Jpn Heart J 19: 839–51.

    Article  PubMed  CAS  Google Scholar 

  • Heethaar RM, van der Gon JJD, Meijler FL (1973a) Mathematical model of A-V conduction in the rat heart. Cardiovasc Res 7: 105–14

    Article  PubMed  CAS  Google Scholar 

  • Heethaar RM, de vos Burchart RM, van der Gon JJD, Meijler FL (1973b) A mathematical model of A-V conduction in the rat heart. II. Quantification of concealed conduction. Cardiovasc Res 7: 542–56

    Google Scholar 

  • Honzicova N, Fiser B, Semrad B (1973) Ventricular function in patients with atrial fibrillation. Cor Vasa 4: 257–64

    Google Scholar 

  • Jalife J, Antzelevitch C (1979) Phase resetting and annihilation of pacemaker activity in cardiac tissue. Science 206: 695–7

    Article  PubMed  CAS  Google Scholar 

  • James TN (1973). The sinus node as a servo mechanism. Circulat Res 32: 307–11

    PubMed  CAS  Google Scholar 

  • Jalife J, Antzelevitch C (1980) Pacemaker annihilation: diagnostic and therapeutic implications. Am Heart J 100: 128–30

    Article  PubMed  CAS  Google Scholar 

  • Janse MJ (1969) Influence of the direction of the atrial wave front on A-V nodal transmission in isolated hearts of rabbits. Circ Res 25: 439–49

    PubMed  CAS  Google Scholar 

  • Janse MJ (1990) Propagation of atrial impulses through the atrioventricular node. In: Touboul P, Waldo AL (eds) Atrial arrhythmias. Current concepts and management. Mosby Year Book, St Louis, pp 141–52

    Google Scholar 

  • Josephson ME, Seides SF (1979) Clinical cardiac electrophysiology. Techniques and interpretations. Lea & Febiger, Philadelphia

    Google Scholar 

  • Joyner RW (1986) Modulation of repolarization by electrotonic interactions. Jpn Heart J 27 [Suppl I]: 167–83

    Article  PubMed  Google Scholar 

  • Katholi CR, Urthaler F, Macy J, James TN (1977) A mathematical model of automaticity in the sinus node and AV junction based on weakly coupled relaxation oscillations. Comp Biomed Res 10: 529–43E P

    Article  CAS  Google Scholar 

  • Kirsh JA, Sahakian AV, Baerman JM, Swiryn S (1988) Ventricular response to atrial fibrillation: role of atrioventricular conduction pathways. J Am Coll Cardiol 12: 1265–72

    Article  PubMed  CAS  Google Scholar 

  • Klein GJ, Yee R, Sharma AD (1984) Concealed conduction in accessory atrioventricular pathways: an important determinant of the expression of arrhythmias in patients with Wolff-Parkinson-White syndrome. Circulation 70: 402–11

    Article  PubMed  CAS  Google Scholar 

  • Knowlton AA, Falk RH (1990) Paradoxical increase in heart rate before conversion to sinus rhythm in patients with recent-onset atrial fibrillation. Am J Cardiol 65: 930–2

    Article  PubMed  CAS  Google Scholar 

  • Lange G (1965) Action of driving stimuli from intrinsic and extrinsic sources on in situ cardiac pacemaker tissues. Circ Res 17: 449–59

    PubMed  CAS  Google Scholar 

  • Langendorf R, Pick A, Katz LN (1965) Ventricular response in atrial fibrillation. Role of concealed conduction in the AV junction. Circulation 32: 69–75

    PubMed  CAS  Google Scholar 

  • Leier CV, Johnson TM, Lewis RP (1979) Uncontrolled ventricular rate in atrial fibrillation. A manifestation of dissimilar atrial rhythms. Br Heart J 42: 106–9

    Article  PubMed  CAS  Google Scholar 

  • Malik M, Camm AJ (1989) Computer simulation of myocardial fibrillation using a one-dimensional model of excitation and recovery processes. Cardiovasc Res 23: 132–44

    Article  PubMed  CAS  Google Scholar 

  • Meijler FL, Fisch C (1989) Does the atrioventricular node conduct? Br Heart J 61: 309–15

    Article  PubMed  CAS  Google Scholar 

  • Meijler FL, Heethar RM, Harms FMA et al. (1982) Comparative atrioventricular conduction and its consequences for atrial fibrillation in man. In: Kulburtus HE, Olsson SB, Schlepper M (eds) Atrial fibrillation. AB Hassle, Molndal, pp 72 - 80

    Google Scholar 

  • Meijler FL, van der Tweel I, Herbschieb JN, Hauer RN, Robles de Medina EO (1985) Role of atrial fibrillation and atrioventricular conduction (including Wolff-Parkinson-White syndrome) in sudden death. J Am Coll Cardiol 5: 17B–22B

    Article  Google Scholar 

  • Mendez C, Gruhzit CC, Moe GK (1956) Influence of cycle length upon refractory period of auricles, ventricles, and A-V node in the dog. Am J Physiol 184: 287–95

    PubMed  CAS  Google Scholar 

  • Milstein S, Klein GJ, Rattes MF, Sharma AD, Yee R (1987) Comparison of the ventricular response during atrial fibrillation in patients with enhanced atrioventricular node conduction and Wolff- Parkinson-White syndrome. J Am Coll Cardiol 10: 1244 - 8

    Article  PubMed  CAS  Google Scholar 

  • Moe GK, Abildskov JA (1964) Observations on the ventricular dysrhythmia associated with atrial fibrillation in the dog heart. Circ Res 14: 447–60

    PubMed  CAS  Google Scholar 

  • Moe GK, Rheinboldt WC, Abildskov JA (1964) A computer model of atrial fibrillation. Am Heart J 67: 200–20

    Article  PubMed  CAS  Google Scholar 

  • Moe GK, Childers RW, Meredith J (1968) An appraisal of “Supernormal” A-V conduction. Circulation 38: 5 - 28

    PubMed  CAS  Google Scholar 

  • Moore EN (1967) Observations on concealed conduction in atrial fibrillation. Circ Res 21: 201–8

    PubMed  CAS  Google Scholar 

  • Moore EN, Spear JF (1971) Experimental studies on the facilitation of AV conduction by ectopic beats in dogs and rabbits. Circ Res 29: 29–39

    PubMed  CAS  Google Scholar 

  • Morady F, Dicarlo LA, Krol RB, de Buitleir M, Baerman JM (1986) An analysis of post-pacing R-R intervals during atrial fibrillation. PACE 9: 411–16

    PubMed  CAS  Google Scholar 

  • Olsson SB, Cai N, Dohnal M, Talwar KK (1986) Noninvasive support for and characterization of multiple intranodal pathways in patients with mitral valve disease and atrial fibrillation. Eur Heart J 7: 320–33

    PubMed  CAS  Google Scholar 

  • Osher WJ, Cairns TW (1967) Computer simulation in the study of atrial fibrillation. J Okla State Med Assoc 60: 6–10

    PubMed  CAS  Google Scholar 

  • Pritchett EL, Smith WM, Klein GJ, Hammiii SC, Gallagher JJ (1980) The “compensatory pause” of atrial fibrillation. Circulation 62: 1021–5

    PubMed  CAS  Google Scholar 

  • Reiner VS, Antzelevitch C (1985) Phase resetting and annihilation in a mathematical model of the sinus node. Am J Physiol 249. H1143–53

    PubMed  CAS  Google Scholar 

  • Roberge FA, Bhereur P, Nadeau RA (1971) A cardiac pacemaker model. Med Biol Eng 9: 3–12

    Article  PubMed  CAS  Google Scholar 

  • Rowland E, Curry P, Fox K, Krikler D (1981) Relation between atrioventricular pathways and ventricular response during atrial fibrillation and flutter. Br Heart J 45: 83–7

    Article  PubMed  CAS  Google Scholar 

  • Scher AM, Heethaar RM, Zimmerman ANE, Meijler FL (1976) Atrial rhythm during ventricular fibrillation in the dog. Circ Res 38: 41–5

    PubMed  CAS  Google Scholar 

  • Sealy WC, Seaber AV (1979) Cardiac rhythm following exclusion of the sinoatrial node and most of the right atrium from the remainder of the heart. J Thorac Cardiovasc Surg 77: 436–47

    PubMed  CAS  Google Scholar 

  • Simson (1988) A model of conduction through the N region of the AV node. In: Mazgalev T, Dreifus LS, Michelson EL (eds) Electrophysiology of the sinoatrial and atrioventricular nodes. Alan R Liss, New York, pp 97–109 (Progress in clinical and biological research, volume 275 )

    Google Scholar 

  • Ten Hoopen M (1966) Ventricular response in atrial fibrillation. A model based on retarded excitation. Circ Res 19: 911–6

    PubMed  Google Scholar 

  • Urthaler F, Katholi CR, Macy J, James TN (1973) Mathematical relationship between automaticity of the sinus node and the AV junction. Am Heart J 86: 189–95

    Article  PubMed  CAS  Google Scholar 

  • Van der Pol B, van der Mark J (1928) The heartbeat considered as a relaxation oscillator, and an electrical model of the heart. Phil Mag 6: 763–75

    Google Scholar 

  • Van der Tweel LH, Meijler FL, Van Capelle FJL (1973) Synchronization of the heart. J Appl Physiol 34: 283–87

    PubMed  Google Scholar 

  • Van der Tweel I, Herbshleb JN, Meijler FL (1983) A transfer function model for AV conduction in the human heart. Automedica 4: 251–256

    Google Scholar 

  • Van der Tweel I, Herbschieb JN, Borst C, Meijler FL (1986) Deterministic model of the canine atrioventricular node as a periodically perturbed, biological oscillator. J Appl Cardiol 1: 157–73

    Google Scholar 

  • Wellens HJ, Durrer D (1974) Wolff-Parkinson-White syndrome and atrial fibrillation. Relation between refractory period of accessory pathway and ventricular rate during atrial fibrillation. Am J Cardiol 34: 777–82

    Article  PubMed  CAS  Google Scholar 

  • Winfree AT (1987) When time breaks down. The three-dimensional dynamics of electrochemical waves and cardiac arrhythmias. Princeton University Press, Princeton

    Google Scholar 

  • Wittkampf FHM, de Jongste MJL, Lie HI, Meijler FL (1988) Effect of right-ventricular pacing on ventricular rhythm during atrial fibrillation. J Am Coll Cardiol 11: 539–45

    Article  PubMed  CAS  Google Scholar 

  • Zipes DP, Mendez C, Moe GK (1973) Evidence for summation and voltage dependency in rabbit atrioventricular nodal fibers. Circ Res 32: 170–7

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag London Limited

About this chapter

Cite this chapter

Rawles, J. (1992). Models of the Atrioventricular Node. In: Atrial Fibrillation. Springer, London. https://doi.org/10.1007/978-1-4471-1898-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1898-5_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1900-5

  • Online ISBN: 978-1-4471-1898-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics