Skip to main content

Immunotherapy of Brain Tumours

  • Chapter
Malignant Brain Tumours

Abstract

Host immunity and tumour biology are important cofactors in brain tumour immunotherapy. Much of the research for brain tumour immunobiology has centred upon evaluation of tumour cell antigenicity and the cell-mediated immune responses to the malignant tumours. Over recent years, evidence has been accumulated from monoclonal-antibody research for the presence of brain tumour associated antigens. There has also been an increasing awareness of the ways in which a brain tumour can apparently evade host immune reactions. In addition, it should be recognized that a host versus tumour reaction occurs at the site of tumour growth and that the cell-mediated immune system may have a central role for possible control of neoplastic growth. Ideas for potential therapeutic manipulation of host-glioma immune interactions will be reviewed critically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barba D, Saris SC, Holder RN et al. (1989) Intratumoral LAK cell and interleukin-2 therapy of human gliomas. J Neurosurg 70: 175–182

    Article  PubMed  CAS  Google Scholar 

  • Behnke J, Coakham HB, Mach JP et al. (1988) Monoclonal antibodies in the diagnosis and therapy of brain tumors. In: Kornblith PL, Walker MD (eds) Advances in Neuro-oncology. Futura Publishing Co. Inc., Mount Kisco, NY, USA, pp 249–285

    Google Scholar 

  • Brady LW, Woo DV, Karlsson U et al. (1988) Radioimmunotherapy of human gliomas using I-25 labeled monoclonal antibody to epidermal growth factor receptor. Proceedings of ASCO 7: p 83

    Google Scholar 

  • Carrel S, de Tribolet N, Mach JP (1982) Expression of neuroectodermal antigens common to melanomas, gliomas and neuroblastomas. I. Identification by monoclonal anti-melanoma and anti-glioma antibodies. Acta Neuropathol 57: 158–164.

    Article  PubMed  CAS  Google Scholar 

  • Coakham HB, Richardson RB, Davies AG et al. (1988) Neoplastic meningitis from a pineal tumor treated by antibody-guided irradiation via the intrathecal route. Br J Neurosurg 2: 299.

    Google Scholar 

  • Colapinto EV, Humphrey PA, Zalutsky MR et al. (1988) Comparative localization of murine monoclonal antibody Mel-14 F(ab‵)2 fragment and whole IgG2a in human glioma xenografts. Cancer Res 48: 5701–5707

    PubMed  CAS  Google Scholar 

  • de Martin R, Haendler B, Hofer-Warbinek R et al. (1987) Complementary DNA for human glioblastoma-derived T cell suppressor factor, a novel member of the transforming growth factor-α gene family. EMBO J 6: 3673–3677

    PubMed  Google Scholar 

  • de Muralt B, de Tribolet N, Diserens AC et al. (1985) Phenotyping of 60 cultured human gliomas and 34 other neuroectodermal tumors by means of monoclonal antibodies against glioma, melanoma and HLA-DR antigen. Eur J Cancer Clin Oncol 21: 207–216

    PubMed  Google Scholar 

  • de Tribolet N, Hamou MF, Mach JP et al. (1984) Demonstration of HLA-DR antigens in normal human brain. J. Neurol Neurosurg Psychiat 47: 417–418

    Article  PubMed  Google Scholar 

  • Fischer DK, Chen TL, Narayan RK (1988) Immunological and biochemical strategies for the identification of brain tumor-associated antigens. J. Neurosurg 68: 165–180.

    Article  PubMed  CAS  Google Scholar 

  • Fontana A, Kristensen F, Dubs R et al. (1982) Production of prostaglandin E and an interleukin 1-like factor by cultured astrocytes and C6 glioma cells. J Immunol 129: 2413–2419

    PubMed  CAS  Google Scholar 

  • Foon KA (1989) Perspective in cancer research. Biological response modifiers: the new immunotherapy. Cancer Res 49: 1621–1639

    PubMed  CAS  Google Scholar 

  • Frank E, Pulver M, de Tribolet N (1986) Expression of class II major histocompability antigens on reactive astrocytes and endothelial cells within the gliosis surrounding metastasis and abscesses. J. Neuroimmunol 12: 29–36

    Article  PubMed  CAS  Google Scholar 

  • Jacobs SK, Wilson DJ, Kornblith PL et al. (1986) Interleukin-2 or autologous lymphokineactivated killer cell treatment of malignant glioma: phase I trial. Cancer Res 46: 2101–2104

    PubMed  CAS  Google Scholar 

  • Johnson VG, Wrobel C, Wilson D et al. (1989) Improved tumor-specific immunotoxins in the treatment of CNS and leptomeningeal neoplasia. J. Neurosurg 70: 240–248

    Article  PubMed  CAS  Google Scholar 

  • Kuppner MC, Hamou MF, Bodmer S et al. (1988) The glioblastoma-derived T-cell suppressor factor/transforming growth factor beta2 inhibits the generation of lymphokine-activated killer (LAK) cells. Int J Cancer 42: 562–567

    Article  PubMed  CAS  Google Scholar 

  • Lee Y, Bullard DE, Humphrey PA et al. Treatment of intracranial human glioma xenografts with 131I-labeled anti-tenastin monoclonal antibody 81C6. Cancer Res 48: 2904–2910

    Google Scholar 

  • Mahaley MS, Bertsch L, Cush S et al. (1988) Systematic gamma-interferon therapy for recurrent gliomas. J. Neurosurg 69: 826–829

    Article  PubMed  Google Scholar 

  • Merchant RE, Merchant LH, Cook SHS et al. (1989) Intratumoral infusion of lymphokineactivated killer (LAK) cells and recombinant interleukin-2 (IL-2) for the treatment of patients with malignant brain tumor. Neurosurg 23: 725–732

    Article  Google Scholar 

  • Moseley R, Zalutsky MR, Coakham HB et al. (1987) Distribution of 131I 81C6 monoclonal antibody (Mab) administered via carotid artery in patients with glioma. J. Nucl Med 28: 603–604

    Google Scholar 

  • Nagai M (1988) Clinical use of interferons in the treatment of malignant brain tumor. In: Revel M (ed) Clinical Aspects of Interferons. Kluwer Academic Publishers, Boston, pp 183–194

    Chapter  Google Scholar 

  • Neuwelt EA (1984) Therapeutic potential for blood brain barrier modification in malignant brain tumors. Prog Exp Tumor Res 28: 51–56

    PubMed  CAS  Google Scholar 

  • Rutka JT, Giblin JR, Berens ME et al. (1988) The effects of human recombinant tumor necrosis factor on glioma-derived cell lines: cellular proliferation, cytotoxicity, morphological and radioreceptor studies. Int J Cancer 41: 573–582

    Article  PubMed  CAS  Google Scholar 

  • Saris SC, Rosenberg SA, Friedman RB et al. (1988) Penetration of recombinant interleukin-2 across the blood-cerebrospinal fluid barrier. J Neurosurg 69: 29–34

    Article  PubMed  CAS  Google Scholar 

  • Sawamura Y, Hosokawa M, Kuppner MC et al. (1989) Antitumor activity and surface phenotypes of human glioma-infiltrating lymphocytes after in vitro expansion in the presence of interleukin-2. Cancer Res 49: 1843–1849

    PubMed  CAS  Google Scholar 

  • Shibata S, Mori K, Moriyama T et al. (1987) Randomized controlled study of the effect of adjuvant immunotherapy with Picibanil on 51 malignant gliomas. Surg Neurol 27: 259–263

    Article  PubMed  CAS  Google Scholar 

  • Wikstrand CJ, McLendon RE, Carrel S et al. (1987) Comparative localization of glioma-reactive monoclonal antibodies in vivo in an athymic mouse human glioma xenograft model. J Neuroimmunol 15: 37–56

    Article  PubMed  CAS  Google Scholar 

  • Yoshida S, Tanaka R, Takai N et al. (1988) Local administration of autologous lymphokineactivated killer cells and recombinant interleukin 2 to patients with malignant brain tumors. Cancer Res 48: 5011–5016

    PubMed  CAS  Google Scholar 

  • Zuber P, Accolla RS, Carrel S et al. (1988) Effects of recombinant human tumor necrosis factor-a on the surface phenotype and the growth of human malignant glioma cell lines. Int J Cancer 42: 780–786

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag London Limited

About this chapter

Cite this chapter

Sawamura, Y., de Tribolet, N. (1995). Immunotherapy of Brain Tumours. In: Thomas, D.G.T., Graham, D.I. (eds) Malignant Brain Tumours. Springer, London. https://doi.org/10.1007/978-1-4471-1877-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1877-0_14

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1879-4

  • Online ISBN: 978-1-4471-1877-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics