Skip to main content

Alternative Approaches to the Pathology of Motor Neuron Disease

  • Chapter
Motor Neuron Disease
  • 271 Accesses

Abstract

The pathology of motor neuron disease (MND) is well recognised, but poses many problems of interpretation and understanding. There is, as yet, no insight into the pathobiological mechanisms that underlie the development of the specific neuro–degenerative changes that must characterise the disease. In order to try to understand this problem a number of other approaches have been tried.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achari AN, Anderson S (1974) Myopathic changes in amyotrophic lateral sclerosis. Neurology 24: 477–481

    PubMed  CAS  Google Scholar 

  • Alderson K, Pestronk A, Yee W-C, Drachman DB (1989) Silver cholinesterase immunocytochemistry: a new neuromuscular junction stain. Muscle Nerve 12: 9–14

    PubMed  CAS  Google Scholar 

  • Andrews JM (1975) The fine structure of the cervical spinal cord, ventral root and brachial nerves in the wobbler (wr) mouse. J Neuropathol Exp Neurol 34: 12–27

    PubMed  CAS  Google Scholar 

  • Andrews JM, Gardner MB, Wolfgram FJ, et al. (1974) Studies on a murine form of spontaneous lower motor neuron degeneration–the wobbler (wr) mouse. Am J Pathol 76: 63–78

    PubMed  CAS  Google Scholar 

  • Aquino DA, Bisby MA, Ledeen RW (1987) Bidirectional transport of gangliosides, glycoproteins and neutral glycosphingolipids in the sensory neurons of rat sciatic nerve. Neuroscience 20: 1023–1029

    PubMed  CAS  Google Scholar 

  • Arvidson B (1987) Retrograde axonal transport of mercury. Exp Neurol 98: 198–203

    PubMed  CAS  Google Scholar 

  • Ballard PA, Tetrad JW, Langston JW (1985) Permanent human parkinsonism due to l-methyl-4-phenyl- I, 2,3,6-tetrahydropyridine (MPTP): seven cases. Neurology 35: 949–956

    PubMed  CAS  Google Scholar 

  • Bambourg JR, Bray D, Chapman K (1986) Assembly of microtubules at the tip of growing axons. Nature 231: 788–790

    Google Scholar 

  • Baruah JK, Chandri GR, Bradley WG, Munsat TL (1981) Retrograde transport of lead in rat sciatic nerve. Neurology 31: 612–616

    PubMed  CAS  Google Scholar 

  • Binet S, Meininger V (1988) Modifications of microtubule proteins in ALS nerve precede detectable histologic and ultrastructural changes. Neurology 38: 1596–1600

    PubMed  CAS  Google Scholar 

  • Bird MT, Shuttleworth E Jnr, Koestner A, et al. (1971) The wobbler mouse mutant: an animal model of hereditary motor system disease. Acta Neuropathol 19: 39–50

    PubMed  CAS  Google Scholar 

  • Bjornskov EK, Dekker NP, Norris FH, et al. (1975) End-plate morphology in amyotrophic lateral sclerosis. Arch Neurol 32: 711–712

    PubMed  CAS  Google Scholar 

  • Bjornskov EK, Norris FH, Mower-Kuby J (1982) Histochemical staining of the acetylcholine receptor, acetylcholinesterase and the axon terminal. Muscle Nerve 5: 140–142

    PubMed  CAS  Google Scholar 

  • Black MM, Lasek RJ (1980) Slow components of axonal transport; two cytoskeletal networks. J Cell Biol 86: 616–623

    PubMed  CAS  Google Scholar 

  • Brady ST (1985) A novel brain ATPase with properties expected for the fast axonal transport motor. Nature 317: 73–75

    PubMed  CAS  Google Scholar 

  • Brady ST, Lasek RJ (1982) Axonal transport; a cell–biological method for studying proteins that associate with the cytoskeleton. Methods Cell Biol 25 (b): 365–398

    PubMed  CAS  Google Scholar 

  • Brady ST, Pfister KK, Bloom GS (1990) A monoclonal antibody against kinesin inhibits both anterograde and retrograde fast axonal transport in squid axoplasm. Proc Natl Acad Sci USA 87: 1061–1065

    PubMed  CAS  Google Scholar 

  • Breuer AC, Lynn MP, Atkinson MB, et al. (1987) Fast axonal transport in amyotrophic lateral sclerosis: An intra-axonal organelle traffic analysis. Neurology 37: 738–748

    Google Scholar 

  • Brooks BR, Swarz JR, Johnson RT (1980) Spongiform polioencephalomyelopathy caused by a murine retrovirus. I. Pathogenesis of infection in newborn mice. Lab Invest 43: 480–486

    Google Scholar 

  • Brown MC, Holland RL Hopkins WG (1981) Motor nerve sprouting. Ann Rev Neurosci 4: 17–42

    PubMed  CAS  Google Scholar 

  • Buchthal F, Pinelli L (1953) Action potentials in muscular atrophy of neurogenic origin. Neurology 3: 591–603

    PubMed  CAS  Google Scholar 

  • Bunina TL (1962) On intracellular inclusions in familial amyotrophic lateral sclerosis. An Neuropat Psikhit Korsakov 62: 1293–1299

    CAS  Google Scholar 

  • Carpenter S (1968) Proximal axonal enlargement in motor neuron disease. Neurology 18: 842–851

    Google Scholar 

  • Chalfie M, Wolinsky E (1990) The identification and suppression of inherited neurodegeneration in Caenorhabditis elegans. Nature 345: 410–416

    PubMed  CAS  Google Scholar 

  • Charcot JM, Joffroy A (1869) Deux cas d’atrophie musculaire progressive avec lesions de la substance grise et faisceaux antero-lateraux de la moelle epiniere. Arch Physiol Norm Pathol 2: 354, 629, 744

    Google Scholar 

  • Coers C, Teleman-Toppet N, Gerard JM (1973a) Terminal innervation ratio in neuromuscular disease. I. Methods and controls. Arch Neurol 49: 210–214

    Google Scholar 

  • Coers C, Telerman–Toppet N, Gerard JM (1973b) Terminal innervation ratio in neuromuscular diseases. II. Disorders of lower motor neuron, peripheral nerve and muscle. Arch Neurol 49: 215–222

    Google Scholar 

  • Conradi S (1969) Ultrastructure and distribution of neuronal and glial elements on the motoneurone surface in the lumbosacral spinal cord of the adult cat. Acta Physiol Scand (Suppl) 332: 5–48

    CAS  Google Scholar 

  • Cork LC, Griffin JW, Munnell JF, et al. (1979) Hereditary canine spinal muscular atrophy. J Neuropathol Exp Neurol 38: 209–222

    PubMed  CAS  Google Scholar 

  • Cork LC, Griffin JW, Choy C, et al. (1982) Pathology of motor neurons in accelerated hereditary canine spinal muscular atrophy. Lab Invest 46: 89–99

    PubMed  CAS  Google Scholar 

  • Cuppini R, Cecchini T, Cuppini C, Ciaroni S, Del Grande P (1990) Time course of sprouting during muscle reinnervation in vitamin E–deficient rats. Muscle Nerve 13: 1027–1031

    PubMed  CAS  Google Scholar 

  • Dahlstrom A (1971) Effects of vinblastine and colchicine on monoamine containing neurons of the rat, with special regard to the axonal transport of amine granules. Acta Neuropathol Suppl 5: 226–235

    Google Scholar 

  • De Aranjo CG, Schmidt RA, Tanaglio RA (1982) Neural pathways to lower urinary tract identified by retrograde axonal transport of horseradish peroxidase. Urology 19: 290–295

    Google Scholar 

  • De Groat WC, Nadelhaft I, Miline RJ, et al. (1981) Organisation of the sacral parasympathetic reflex pathways to the urinary bladder and large intestine. J Auton Nerv Syst 3: 135–160

    PubMed  Google Scholar 

  • Den Hartog Jager WA (1985) Experimental motor neuron disease in the guinea–pig. J Neurol Sci 67: 133–142

    Google Scholar 

  • Droz B, Leblond CP (1962) Migration of proteins along the axons of the sciatic nerve. Science 137: 1047–1048

    PubMed  CAS  Google Scholar 

  • Dubowitz V, Brooke MH (1973) Muscle biopsy: a modern approach. Saunders, Philadelphia Duchen LW, Strich SJ, Falconer DS (1968) An hereditary motor neuron disease with progressive denervation of muscle in the mouse: the mutant ‘wobbler’. J Neurol Neurosurg Psychiatr 31: 535–542

    Google Scholar 

  • Edstrom L, Kugelberg E (1968) Histochemical composition, distribution of fibres and fatiguability of single motor units. J Neurol Neurosurg Psychiatr 31: 424–433

    PubMed  CAS  Google Scholar 

  • Einstein G (1988) Intracellular injection of Lucifer yellow into cortical neurons in lightly fixed sections and its application to human autopsy material. J Neurosci Methods 26: 95–103

    PubMed  CAS  Google Scholar 

  • Filliatreau G, Denoulet P, de Nechaud B, Di Giamberardino L (1988) Stable and metastable cytoskeletal polymers carried by slow axonal transport. J Neurosci 8: 2227–2233

    CAS  Google Scholar 

  • Forno LS, Langston JW, DeLanney LE, Irwin I, Ricaurte GA (1986) Locus coeruleus lesions and eosinophilic inclusions in MPTP–treated monkeys. Ann Neurol 20: 449–455

    PubMed  CAS  Google Scholar 

  • Gajdusek DC (1985) Hypothesis: interference with axonal transport of neurofilament as a common pathogenetic mechanism in certain diseases of the central nervous system. N Engl J Med 312: 714–719

    PubMed  CAS  Google Scholar 

  • Gainer H, Tasaki I, Lasek RJ (1977) Evidence for the glianeuron transfer hypothesis from intracellular perfusion studies of squid giant axons. J Cell Biol 74: 524–530

    PubMed  CAS  Google Scholar 

  • Gardner MB, Rasheed S, Klement V, et al. (1976) Lower motor neuron disease in wild mice caused by indigenous type C virus and search for a similar etiology in human amyotrophic lateral sclerosis. In: Andrews JM, Johnson RT, Brazier MAB (eds) Amyotrophic lateral sclerosis. Academic Press, Orlando, pp 217–234

    Google Scholar 

  • Ghetti B, Ochs S (1978) On the relation between microtubule density and axoplasmic transport in nerves treated with maytansine. In: Canal N, Pozza G (eds); Peripheral neuropathies, developments in neurology. Elsevier-North Holland, Amsterdam.

    Google Scholar 

  • Gibb WRG (1989) Neuropathology of Parkinson’s disease. The Parkinson’s Disease Society, London (The Parkinson Papers 4 )

    Google Scholar 

  • Gibson SL, Polak JM, Katagiri T, et al. (1988) A comparison of the distribution of eight peptides in spinal cord from normal controls and cases of motor neuron disease, with special reference to Onuf’s nucleus. Brain Res 474: 255–278

    PubMed  CAS  Google Scholar 

  • Gilliam TC, Brzustowicz LM, Castilla LH, et al. (1990) Genetic homogeneity between acute and chronic forms of spinal muscular atrophy. Nature 345: 823–825

    PubMed  CAS  Google Scholar 

  • Gorio A, Carmignoto G, Finesso M, Polata P, Nunci MG (1983) Muscle reinnervation. II. Sprouting, synapse formation and repression. Neuroscience 8: 403–416

    Google Scholar 

  • Grafstein B, Forman DS (1980) Intracellular transport in neurons. Physiol Rev 60: 1167–1283

    PubMed  CAS  Google Scholar 

  • Griffin JW, Cork LC, Adams RJ, et al. (1982) Axonal transport in hereditary canine spinal muscular atrophy. J Neuropathol Exp Neurol 41: 370

    Google Scholar 

  • Grundlach AL, Grabara CSG, Johnston GAR, et al. (1990) Receptor alterations associated with spinal motoneuron degeneration in bovine akabane disease. Ann Neurol 27: 513–519

    Google Scholar 

  • Gurney ME (1984) Suppression of sprouting at the neuromuscular junction by immune sera. Nature 307: 546–548

    PubMed  CAS  Google Scholar 

  • Gurney ME, Belton AC, Cashman N, et al. (1984) Inhibition of terminal axonal sprouting by serum from patients with amyotrophic lateral sclerosis. N Engl J Med 311: 933–939

    PubMed  CAS  Google Scholar 

  • Hartley WJ, De Saram WG, Della-Porta AJ, et al. (1977) Pathology of congenital bovine epizootic arthrogryposis and hydranencephaly and its relationship to Akabane virus. Aust Vet J 53: 319–325

    PubMed  CAS  Google Scholar 

  • Hendry I A, Stoeckel K, Thoenen H, Iversen LL (1974) The retrograde axonal transport of nerve growth factor. Brain Res 68: 103–121

    PubMed  CAS  Google Scholar 

  • Hengartner MO, Elis RE, Horvitz HR (1992) Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature 356: 494–499

    PubMed  CAS  Google Scholar 

  • Hirano A (1965) Pathology of amyotrophic lateral sclerosis. In: Gajdusek DC, Gibbs CJ (eds) Slow, latent and temperate infections. NINDB Monograph No 2. National Institutes of Health, Washington, DC, pp 3–37

    Google Scholar 

  • Hirano A, Inoue K (1980) Early pathological changes in amyotrophic lateral sclerosis: electron microscopic studies of chromatolysis, spheroids and Bunina bodies. Neurol Med (Tokyo) 13: 148–160

    Google Scholar 

  • Hirano A, Donnenfeld H, Sasaki S, Nakano I (1984a) Fine structural observations of neurofilamentous changes in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 43: 461–470

    PubMed  CAS  Google Scholar 

  • Hirano A, Nakano I, Kurland LT, Mulder DW, Holley PW, Saccomanno G (1984b) Fine structural study of neurofibrillary changes in a family with amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 43: 471–480

    PubMed  CAS  Google Scholar 

  • Hoffman H, Springell PH (1951) An attempt at the chemical identification of “neurocletin” (the substance evoking axon sprouts). Aust J Exp Biol Med 29: 417–424

    CAS  Google Scholar 

  • Hoffman PH, Lasek RJ (1975) The slow component of axonal transport; identification of major structural polypeptides of the axon and their generality among mammalian neurons. J Cell Biol 66: 351–366

    PubMed  CAS  Google Scholar 

  • Holland J J, McLaren LC, Syverton JT (1959) Mammalian cell-virus relationship. III. Poliovirus production by non-primate cells exposed to poliovirus ribonucleic acid. Proc Soc Exp Biol 100: 843–845

    Google Scholar 

  • Holstege G, Tan J (1987) Supraspinal control of motoneurons innervating the striated muscles of the pelvic floor including urethral and anal sphincters in the cat. Brain 110: 1323–1344

    PubMed  Google Scholar 

  • Holstege G, Griffiths D, Wall HD, Dalm E (1986) Anatomical and physiological observations on supraspinal control of bladder and urethral sphincter muscles in the cat. J Comp Neurol 250: 449–461

    PubMed  CAS  Google Scholar 

  • Inoue K, Hirano A (1979) Early pathological changes in amyotrophic lateral sclerosis: autopsy findings in a case of 10 months duration. Neurol Med (Tokyo) 11: 448–455

    Google Scholar 

  • Iwata M, Hirano A (1978) Sparing of the Onufrowicz nucleus in sacral anterior horn lesions. Ann Neurol 4: 245–249

    PubMed  CAS  Google Scholar 

  • Iwata M, Hirano A (1979) Current problems in the pathology of amyotrophic lateral sclerosis. In: Zimmerman HM (ed) Progress in neuropathology. Raven Press, New York, pp 277–298

    Google Scholar 

  • Jockusch H, Jockusch BM (1981) Structural proteins in the growth cone of cultured spinal cord neurons. J Cell Biol 131: 345–352

    CAS  Google Scholar 

  • Jubelt M, Meagher JB (1984) Poliovirus infection of cyclophosphamide-treated mice results in persistent and late paralysis. I. Clinical, pathologic and immunologic studies. Neurology 34: 486–493

    Google Scholar 

  • Jubelt B, Narayan O, Johnson RT (1980) Pathogenesis of human poliovirus infection in mice. II. Age-dependency of paralysis. J Neuropathol Exp Neurol 39: 149–159

    Google Scholar 

  • Katagiri T, Gibson SJ, Su HC, Polak JM (1986) Composition and central projections of the pudendal nerve in the rat investigated by combined peptide immunocytochemistry and retrograde fluorescent labelling. Brain Res 372: 313–322

    PubMed  CAS  Google Scholar 

  • Kennedy PGE (1990) On the possible role of viruses in the aetiology of motor neuron disease: a review. J R Soc Med 83: 784–787

    PubMed  CAS  Google Scholar 

  • Kreutzberg GW (1969) Neuronal dynamics and axonal flow. IV. Blockage of intra-axonal enzyme transport by colchicine. Proc Natl Acad Sci USA 62: 722–728

    PubMed  CAS  Google Scholar 

  • Kurtzke JF, Beebe GW (1980) Epidemiology of amyotrophic lateral sclerosis. I. A case-control comparison based on ALS deaths. Neurology 30: 453–462

    Google Scholar 

  • Lasek RJ (1982) Translocation of the neuronal cytoskeleton and axonal locomotion. Philos Trans R Soc 299: 313–327

    CAS  Google Scholar 

  • Lasek RJ (1986) Polymer sliding in axons. J Cell Sci (Suppl 5 ): 161–179

    CAS  Google Scholar 

  • Lasek RJ, Garner JA, Brady ST (1984) Axonal transport of the cytoskeletal matrix. J Cell Biol 99: 212s–221s

    PubMed  CAS  Google Scholar 

  • Leigh PN, Anderton BH, Dodson A, Gallo J–M, Swash M, Power DM (1988) Ubiquitin deposits in anterior horn cells in motor neuron disease. Neurosci Lett 93: 197–203

    PubMed  CAS  Google Scholar 

  • Leigh PN, Dodson A, Swash M, Brion J–P, Anderton BH (1989) Cytoskeletal abnormalities in motor neuron disease. An immunocytochemical study. Brain 112: 521–535

    Google Scholar 

  • Lowe J, Lennox G, Jefferson D, et al. (1988) A filamentous inclusion body within anterior horn neurons in motor neuron disease defined by immunocytochemical localisation of ubiqutin. Neurosci Lett 94: 204–210

    Google Scholar 

  • Lutsep HL, Rodriguez M (1989) Ultrastructural, morphometric and immunocytochemical study of anterior horn cells in mice with ‘wasted’ mutation. J Neuropath Exp Neurol 48: 519–533

    PubMed  CAS  Google Scholar 

  • Manetto V, Sternberger NH, Perry G, et al. (1988) Phosphorylation of neurofilaments is altered in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 47: 642–653

    PubMed  CAS  Google Scholar 

  • Mangeat PH, Burridge K (1984) Immunoprecipitation of non-erythrocyte spectrin within live cells following microinjection of specific antibodies: relation to cytoskeletal structures. J Cell Biol 98: 1363–1377

    PubMed  CAS  Google Scholar 

  • Mannen T, Iwata M, Toyokura M, et al. (1977) Preservation of a certain motoneurone group of the sacral cord in amyotrophic lateral sclerosis; its clinical significance. J Neurol Neurosurg Psychiatr 40: 464–469

    PubMed  CAS  Google Scholar 

  • Martyn CN (1990) Poliovirus and motor neuron disease. J Neurol 237: 336–338

    PubMed  CAS  Google Scholar 

  • Matsushita M, Hosoya Y (1979) Cells of origin of the spinocerebellar tract in the rat, studied with the method of retrograde transport of horseradish peroxidase. Brain Res 173: 185–200

    PubMed  CAS  Google Scholar 

  • Mazurkiewitz JE, Callahan LM, Messer A (1988) Distribution of neurofilament epitopes in spinal motoneurons in the normal and motor neuron degeneration mutant ( Mnd) mouse. J Cell Biol 107: 725a

    Google Scholar 

  • Mazurkiewitz JE (1990) Ubiquitin deposits in spinal motoneurons of the Mnd (motor neuron degeneration) mouse. J Neurol Sci (Suppl) 98: 349

    Google Scholar 

  • McQuarrie IG, Brady ST, Lasek RJ (1986) Diversity in the axonal transport of structural proteins: major differences in between optic and spinal axons in the rat. J Neurosci 6: 1593–1605

    PubMed  CAS  Google Scholar 

  • Messer A, Flaherty L (1986) Autosomal dominance in a late-onset motor neuron disease in the mouse. J Neurogenet 3: 345–355

    PubMed  CAS  Google Scholar 

  • Messer A, Strominger NL, Mazurkiewitz JE (1987) Histopathology of the late–onset motor neuron degeneration ( Mnd) mutant in the mouse. J Neurogenet 4: 201–213

    Google Scholar 

  • Mitsumoto H (1985) Axonal regeneration in wobbler motor neuron disease: quantitative histologic and axonal transport studies. Muscle Nerve 8: 44–51

    PubMed  CAS  Google Scholar 

  • Mitsumoto H, Bradley WG (1982) Murine motor neuron disease (the wobbler mouse). Degeneration and regeneration of the lower motor neurons. Brain 105: 811–834

    Google Scholar 

  • Mitsumoto H, Gambetti P (1983) Slow axonal transport in the wobbler mouse ( Murine motor neuron disease ). Soc Neurosci 9: 151

    Google Scholar 

  • Mulder DW, Kurland LT, Offord KP, et al. (1986) Familial adult motor neuron disease: amyotrophic lateral sclerosis. Neurology 36: 511–517

    PubMed  CAS  Google Scholar 

  • Munoz DG, Greene C, Perl DP, Selkoe DJ (1988) Accumulation of phosphorylated neurofilaments in anterior horn motoneurons of amyotrophic lateral sclerosis patients. J Neuropathol Exp Neurol 47: 9–18

    PubMed  CAS  Google Scholar 

  • Murakami T, Mastaglia L, Bradley WG (1980) Reduced protein synthesis in spinal anterior horn neurons in wobbler mouse mutant. Exp Neurol 67: 423–432

    PubMed  CAS  Google Scholar 

  • Nagara H, Yakajima K, Suzuki K (1980) An ultrastructural study of the cerebellum of the brindled mouse. Acta Neuropathol 52: 41–50

    PubMed  CAS  Google Scholar 

  • Norris FH (1979) Moving axon particles of intercostal nerve terminals in benign and malignant ALS. Proceedings of the International Symposium on Amyotrophic Lateral Sclerosis. University of Tokyo Press, Tokyo, pp 375–385

    Google Scholar 

  • Ochs S (1982) Axoplasmic transport and its relation to other nerve functions. Wiley, New York Ochs S, Hollingworth D (1971) Dependence of fast axonal transport in nerve on oxidative phosphoryla¬tion. J Neurochem 18: 107–114

    Google Scholar 

  • Okabe S, Hirokawa N (1990) Turnover of fluorescently labelled tubulin and actin in the axon. Nature 343: 479–482

    PubMed  CAS  Google Scholar 

  • Onuf (Onufrowitz) B (1889) Notes on the arrangement and function of the cell groups of the sacral region of the spinal cord. J Nerve Mental Dis 26: 498–504

    Google Scholar 

  • Onuf (Onufrowitz) B (1890) On the arrangement and function of the cell groups of the sacral region of the spinal cord in man. Arch Neurol Psychopathol 3: 387–411

    Google Scholar 

  • Paschal BM, Shpetner HS, Vallee RB (1987) MAP1C is a microtubule–activated ATPase which translocates microtubules in vitro and has dynein–like properties. J Cell Biol 105: 1273–1282

    PubMed  CAS  Google Scholar 

  • Pestronk A, Drachman D (1978) Motor nerve sprouting and acetylcholine receptors. Science 199: 1223–1225

    PubMed  CAS  Google Scholar 

  • Petras JM, Cummings JF (1972) Autonomic neurons in the spinal cord of the rhesus monkey. A correlation of the findings of cyto-architechtonics and sympathectomy with fiber degeneration following dorsal rhizotomy. J Comp Neurol 146: 189–218

    Google Scholar 

  • Pfister KK, Wagner MC, Stenoien DS, Brady ST, Bloom GS (1989) Monoclonal antibodies to kinesin heavy and light chains vesicle-like structures, but not microtubules, in cultured cells. J Cell Biol 108: 1453–1463

    PubMed  CAS  Google Scholar 

  • Porter ME, Scholey JM, Stemple DL, Vigers GPA, Sheetz MP, Mcintosh JR (1987) Characterisation of the microtubule movement produced by sea urchin egg kinesin. J Biol Chem 262: 2794–2802

    PubMed  CAS  Google Scholar 

  • Pullen AH (1988) Quantitative synaptology of feline motoneurons to external anal sphincter muscle. J Comp Neurol 269: 414–424

    PubMed  CAS  Google Scholar 

  • Pullen AH (1990) Morphometric evidence from C-synapses for phased Nissl body response in a-motoneurons retrogradely intoxicated with diphtheria toxin. Brain Res 509: 8–1

    PubMed  CAS  Google Scholar 

  • Pullen AH, Martin JE, Swash M (1992) Ultrastructure of presynaptic input to motor neurones in Onuf’s nucleus; controls and motor neuron disease. Neuropathol Appl Neurobiol 18: 213–231

    PubMed  CAS  Google Scholar 

  • Rexed BA (1954) A cytoarchitechtonic atlas of the spinal cord in the cat. J Comp Neurol 100: 297–379

    PubMed  CAS  Google Scholar 

  • Ritchie TC, Fabian RH, Choate JVA, Coulter JD (1986) Axonal transport of monoclonal antibodies. J Neurosci 6: 1177–1184

    PubMed  CAS  Google Scholar 

  • Sack GH Jnr, Cork LC, Morris JM, et al. (1984) Autosomal dominant inheritance of hereditary canine spinal muscular atrophy. Ann Neurol 15: 369–373

    PubMed  Google Scholar 

  • Sasaki S, Kamei H, Yamane K, et al. (1988) Swelling of neuronal processes in motor neuron disease. Neurology 38: 1114–1118

    PubMed  CAS  Google Scholar 

  • Sato M, Mizuno M, Konishi A (1978) Localisation of motoneurones innervating peroneal muscles: a HRP study in cat. Brain Res 140: 149–154

    PubMed  CAS  Google Scholar 

  • Sayre LM, Autilio-Gambetti L, Gambetti P (1985) Pathogenesis of experimental giant neurofilamentous axonopathies: A unified hypothesis based on chemical modification of neurofilaments. Brain Res Rev 10: 69–83

    Google Scholar 

  • Schlaepfer WW (1971) Vincristine-induced axonal alterations in rat peripheral nerve. J Neuropathol Exp Neurol 30: 488–505

    PubMed  CAS  Google Scholar 

  • Schmalbruch H, Jensen, H–JS, Bjaerg M, Kamieniecka Z, Kurland L (1991) A new mouse mutant with progressive motor neuronopathy. J Neuropathol Exp Neurol 50: 192–204

    PubMed  CAS  Google Scholar 

  • Schr0der HD, Reske-Nielsen E (1984) Preservation of the nucleus X-pelvic floor motosystem in amyotrophic lateral sclerosis. Clin Neuropathol 3 (5): 210–216

    PubMed  CAS  Google Scholar 

  • Schwab ME (1990) Myelin-associated inhibitors of neurite growth and regeneration in the CNS. Trends Neurosci 13: 452–456

    PubMed  CAS  Google Scholar 

  • Sendtner M, Schmalbruch H, Stockli KA, Carroll P, Kreutzberg GW, Thoenen H (1992a) Ciliary neurotrophic factor prevents degeneration of motor neurons in mouse mutant progressive motor neuronopathy. Nature 358: 502–504

    PubMed  CAS  Google Scholar 

  • Sendtner M, Stocki KA, Carroll P, Kreutzberg GW, Thoenen H, Schmalbruch H (1992b) More on motor neurons. Nature 360:541–542 Sheetz MP, Steuer ER, Schroer TA (1989) The mechanism and regulation of fast axonal transport. Trends Neurosci 12: 474–478

    Google Scholar 

  • Shultz LD, Sweet HO, Davisson MT, et al. (1982) ‘Wasted’ a new mutant of the mouse with abnormalities characteristic of ataxia telangiectasia. Nature 297:402–404

    Google Scholar 

  • Slack JR, Hopkins WG, Pockett S (1983) Evidence for a motor nerve growth factor. Muscle Nerve 6: 243–252

    PubMed  CAS  Google Scholar 

  • Spencer PS, Schaumberg HH (1981) Classification of neurotoxic disease: a morphological approach. In: Spencer PS, Schaumberg HH (eds) Experimental and clinical neurotoxicology. Williams and Wilkins, Baltimore, pp 92–101

    Google Scholar 

  • Spiegelman BM, Lopata MA, Kirschner MW (1979) Aggregation of microtubule initiation sites preceding neurite outgrowth in mouse neuroblastoma cells. Cell 16: 253–263

    PubMed  CAS  Google Scholar 

  • Sung JH (1982) Autonomic neurons of the sacral spinal cord in amyotrophic lateral sclerosis, anterior poliomyelitis and “neuronal intranuclear hyaline inclusion disease”. Distribution of sacral autonomic neurons. Acta Neuropathol 56: 233–237

    PubMed  CAS  Google Scholar 

  • Sung JH, Mastri AR, Segal E (1979) Pathology of Shy-Drager syndrome. J Neuropathol Exp Neurol 38: 353–368

    PubMed  CAS  Google Scholar 

  • Swift TR (1989) Neurons in Onuf’s nucleus. Arch Neurol 46: 606–607

    PubMed  CAS  Google Scholar 

  • Tashiro T, Sadota T, Matsushima R et al (1989) Convergence of serotonin, encephalin-and substance P–like immunoreactive afferent fibres on single pudendal motoneurones in Onuf’s nucleus of the cat: a light microscope study combining the triple immunocytochemical staining technique with the retrograde HRP-tracing method. Brain Res 481: 392–398

    PubMed  CAS  Google Scholar 

  • Toyokura Y (1979) Negative features in ALS. In: Tsubaki T, Toyokura Y (eds) Amyotrophic lateral sclerosis. University Park Press, Baltimore, pp 53–58

    Google Scholar 

  • Tsaing H (1979) Evidence for an intra–axonal transport of fixed and street rabies virus. J Neuropathol Exp Neurol 38: 286–296

    Google Scholar 

  • Tsukita S, Ishikawa H (1981) The cytoskeleton in myelinated axons: Serial section study. Biomed Res 2: 424–437

    Google Scholar 

  • Tytell M, Brady ST, Lasek RL (1984) Axonal transport of a subclass of tau proteins: evidence for the regional differentiation of microtubules in neurons. Proc Natl Acad Sci USA 81: 1570–1574

    PubMed  CAS  Google Scholar 

  • Urzukainqui A, Carrasco L (1990) Degradation of cellular proteins during poliovirus infection: studies by two-dimensional electrophoresis. J Virol 63: 4729–4735

    Google Scholar 

  • Vale R, Reese T, Sheetz M (1985) Identification of a novel force–generating protein, kinesin, involved in microtubule-based motility. Cell 42: 39–50

    PubMed  CAS  Google Scholar 

  • Vallee RB, Shpetner HS, Paschal BM (1989) The role of dynein in retrograde axonal transport. Trends Neurosci 12: 66–70

    PubMed  CAS  Google Scholar 

  • Waller AV (1852) A new method for the study of the nervous system. Lond J Med 43: 609–625

    Google Scholar 

  • Weiss P, Hiscoe HB (1948) Experiments on the mechanism of nerve growth. J Exp Zool 107: 315–395

    PubMed  CAS  Google Scholar 

  • Whitehouse PJ, Walmsley JK, Zarbin MA, et al. (1983) Amyotrophic lateral sclerosis: alterations in neurotransmitter receptors. Ann Neurol 14: 8–16

    PubMed  CAS  Google Scholar 

  • Wiley RG, Blessing WW, Reis DJ (1982) Suicide transport: destruction of neurons by retrograde transport of ricin, abrin, and moddecin. Science 216: 889–890

    PubMed  CAS  Google Scholar 

  • Willard M, Wiseman M, Levine J, Skene P (1979) Axonal transport of actin in rabbit retinal ganglion cells. J Cell Biol 81: 581–591

    PubMed  CAS  Google Scholar 

  • Wohlfart G (1957) Collateral regeneration from residual motor nerve fibres in amyotrophic lateral sclerosis. Neurology 7:124–134 Yamada KM, Spooner RS, Wessels NK (1970) Axon growth: role of microfilaments and microtubules. Proc Natl Acad Sci USA 66: 1206–1212

    Google Scholar 

  • Yamada KM, Spooner RS, Wessels NK (1971) Ultrastructure and function of growth cones and axons of cultured nerve cells. J Cell Biol 49: 614–635

    PubMed  CAS  Google Scholar 

  • Yamaguchi C, Ineda S, Sakamoto H, et al. (1978) Progressive hereditary neurogenic muscular atrophy in dogs of the pointer breed. Exper Animals 27: 202–204

    Google Scholar 

  • Yamamoto T, Iwasaki Y, Konno H (1984) Retrograde axoplasmic transport of Adriamycin: An experimental form of motor neuron disease? Neurology 34: 1299–1304

    PubMed  CAS  Google Scholar 

  • Yamamoto T, Satomi H, Ise H, Takatama H, Takahashi K (1978) Sacral spinal innervations of the rectal and vesical smooth muscles and the sphincteric muscles as demonstrated by the horseradish peroxidase method. Neurosci Lett 7: 41–47

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag London Limited

About this chapter

Cite this chapter

Martin, J.E., Swash, M. (1995). Alternative Approaches to the Pathology of Motor Neuron Disease. In: Leigh, P.N., Swash, M. (eds) Motor Neuron Disease. Springer, London. https://doi.org/10.1007/978-1-4471-1871-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1871-8_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1873-2

  • Online ISBN: 978-1-4471-1871-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics