Skip to main content

Clinical Pharmacology of Motor Neurons

  • Chapter
Motor Neuron Disease
  • 273 Accesses

Abstract

Advances in neurobiology, neuropharmacology and in the physiology of the human motor system in recent years have been such that it is now clear that a new field of clinical pharmacology of motor neurons is emerging. This chapter brings together information on this subject, that is dispersed in the literature, in order to identify the main themes which are relevant to motor neuron disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aitken JT, Bridger JE (1961) Neuron size and neuron population density in the lumbosacral region of the cat’s spinal cord. J Anat 95: 38–53

    PubMed  CAS  Google Scholar 

  • Akagi H, Miledi R (1988) Heterogeneity of glycine receptors and their messenger RNAs in rat brain and spinal cord. Science 242: 270–273

    Article  PubMed  CAS  Google Scholar 

  • Allen CN, Ross SM, Spencer PS (1990) Properties of the neurotoxic nonprotein amino acids, Beta-N-methylamino-L-alanine (BMAA) and Beta-N-oxalylamino-L-alanine (BOAA). In: Clifford Rose F, Norris FH (eds) Amyotrophic lateral sclerosis: new advances in toxicology and epidemiology. Smith- Gordon, London, pp 41–48

    Google Scholar 

  • Andres PL, Hedlund W, Finison L, Conlon P, Felmus M, Munsat TL (1986) Quantitative motor assessment in amyotrophic lateral sclerosis. Neurology 36: 937–941

    PubMed  CAS  Google Scholar 

  • Andres PL, Thibodeau LM, Finison LJ, Munsat TL (1987) Quantitative assessment of neuromuscular deficit in ALS. Neurol Clin 5: 125–141

    PubMed  CAS  Google Scholar 

  • Angel RW, Hoffmann WW (1963) The H reflex in normal, spastic and rigid subjects. Arch Neurol 8: 591–596

    Google Scholar 

  • Appel V, Stewart SS, Smith G, Appel SH (1987) A rating scale for amyotrophic lateral sclerosis: description and preliminary experience. Ann Neurol 22: 328–333

    Article  PubMed  CAS  Google Scholar 

  • Ascher P, Nowak L (1987) Electrophysiological studies of NMDA receptors. Trends Neurosci 10: 284–288

    Article  CAS  Google Scholar 

  • Ashby P, Burke D, Rao S, Jones RF (1972) Assessment of cyclobenzaprine in the treatment of spasticity. J Neurol Neurosurg Psychiatry 35: 599–605

    Article  PubMed  CAS  Google Scholar 

  • Ashby P, Mailis A, Hunter J (1987) The evaluation of “spasticity”. J Neurol Sci 14: 497–500

    CAS  Google Scholar 

  • Ashworth B (1964) Preliminary trial of Carisoprodol in multiple sclerosis. Practitioner 192: 540–542

    PubMed  CAS  Google Scholar 

  • Askanas V, Engel WK, Kobayashi T (1985) Thyrotropin-releasing hormone enhances motor neuronevoked contractions of cultured human muscle. Ann Neurol 18: 716–719

    Article  PubMed  CAS  Google Scholar 

  • Askanas V, Engel WK, Eagleson K, Micaglio G (1989) Influence of TRH and TRH analogues RGH-2202 and DN-1417 on cultured ventral spinal cord neurons. In: Metcalf G, Jackson IMD (eds) Thyrotropin-releasing hormone: biomedical significance. Ann NY Acad Sci 553: 325–336

    Google Scholar 

  • Banda RW, Means ED, Fitzgerald M (1987) Thyrotropin-releasing hormone decreases neuronal loss induced by axotomy in infant rats. Neurology 37: 285

    Google Scholar 

  • Banda RW, Means ED, Scherch HM (1989) Trophic effect of thyrotropin-releasing hormone in murine ventral horn neuronal cultures. In: Metcalf G, Jackson IMD (eds) Thyrotropin-releasing hormone: biomedical significance. Ann NY Acad Sci 553: 588–589

    Google Scholar 

  • Barbeau H, Bedard PJ (1981) Similar motor effects of 5HT and TRH in rats following chronic spinal transection and 5–7-dihydroxytryptamine injection. Neuropharmacology 20: 611–616

    Article  PubMed  CAS  Google Scholar 

  • Barde YA (1988) What, if anything, is a neurotrophic factor? Trends Neurosci 11: 343–346

    Article  PubMed  CAS  Google Scholar 

  • Bass B, Weinshenker B, Rice GP et al. (1988) Tizanidine versus baclofen in the treatment of spasticity in patients with multiple sclerosis. Can J Neurol Sci 15: 15–19

    PubMed  CAS  Google Scholar 

  • Bensimon G, Lacomblez L, Meininger V et al (1994) A controlled trial of riluzole in amyotrophic lateral sclerosis. N Engl J Med 330: 585–592

    Article  PubMed  CAS  Google Scholar 

  • Bes A, Eyssette M, Pierrot-Deseilligny E, Rohmer F, Waiter JM (1988) A multi-centre, double-blind trial of tizanidine, a new antispastic agent, in spasticity associated with hemiplegia. Curr Med Res Opin 10: 709–718

    Article  PubMed  CAS  Google Scholar 

  • Betz H, Becker CM (1988) The mammalian glycine receptor: biology and structure of a neuronal chloride channel protein. Neurochem Int 13: 137–146

    Article  PubMed  CAS  Google Scholar 

  • Biletch M, Eichman P, Sufit R, Turner J, Brooks BR (1989) Increased fiber density after subcutaneous TRH in amyotrophic lateral sclerosis (ALS) patients. A placebo and low-dose controlled study. In: Metcalf G, Jackson IMD (eds) Thyrotropin-releasing hormone: biomedical significance. Ann NY Sci 553: 614–617

    Google Scholar 

  • Bobker DH, Williams JT (1990) Ion conductances affected by 5-HT receptor subtypes in mammalian neurons. Trends Neurosci 13: 169–173

    Article  PubMed  CAS  Google Scholar 

  • Bohannon RW, Smith MB (1987) Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther 67: 206–207

    PubMed  CAS  Google Scholar 

  • Bormann J (1988) Electrophysiology of GABAa and GABAb receptor subtypes. Trends Neurosci 11: 112–116

    Article  PubMed  CAS  Google Scholar 

  • Braitman DJ, Auker CR, Carpenter DO (1980) Thyrotropin-releasing hormone has multiple actions in cortex. Brain Res 194: 244–248

    Article  PubMed  CAS  Google Scholar 

  • Braun SR (1987) Respiratory system in amyotrophic lateral sclerosis. Neurol Clin 5: 9–31

    PubMed  CAS  Google Scholar 

  • Brausch U, Henatsch HD, Student C, Takano K (1973) In: Gorattini S, Mussini E, Randall LO (eds) The benzodiazepines. Raven Press, New York

    Google Scholar 

  • Breedlove SM (1986) Cellular analyses of hormone influence on motoneuronal development and function. J Neurobiol 17: 157–176

    Article  PubMed  CAS  Google Scholar 

  • Bridges RJ, Stevens DR, Kahle JS, Nunn PB, Kadri M, Cotman CW (1989) Structure-function studies on N-oxalyl-diamino-dicarboxylic acids and excitatory amino acid receptors: evidence that Beta- L-ODAP is a selective non-NMDA agonist. J Neurosci 9: 2073–2079

    PubMed  CAS  Google Scholar 

  • Brooks BR, Sufit RL, Clough J A et al. (1989) Isokinetic and functional evaluation of muscle strength over time in amyotrophic lateral sclerosis. In: Munsat TL (ed) Quantification of neurologic deficit. Butterworth, London, p 143

    Google Scholar 

  • Brown WF, Strong MJ, Snow R (1988) Methods for estimating numbers of motor units in biceps-brachialis muscles and losses of motor units with aging. Muscle Nerve 11: 423–432

    Article  PubMed  CAS  Google Scholar 

  • Burke D (1983) Critical examination of the case for or against fusimotor involvement in disorders of muscle tone. In: Desmedt JE (ed) Motor control mechanisms in health and disease. Raven Press, New York, pp 133–150

    Google Scholar 

  • Carlo JR, Engel WK, Van den Bergh P (1984) Thyrotropin-releasing hormone (TRH) does not affect neuromuscular transmission in patients with amyotrophic lateral sclerosis (ALS). Neurology 34 (Suppl 1): 146

    Google Scholar 

  • Chen D-F, Bianchetti M, Wiesendanger M (1987) The adrenergic agonist tizanidine has differential effects on flexor reflexes of intact and spinalized rat. Neuroscience 23: 641–647

    Article  PubMed  CAS  Google Scholar 

  • Choi DW, Visekul V, Amirthanayagam M, Monyer H (1989) Aspartate neurotoxicity on cultured cortical neurons. J Neurosci Res 23: 116–121

    Article  PubMed  CAS  Google Scholar 

  • Clarke KA, Stirk G (1983) Motor neurone excitability after administration of a thyrotropin-releasing hormone analogue. Br J Pharmacol 80: 561–565

    PubMed  CAS  Google Scholar 

  • Clarke KA, Parker AJ, Stirk CG (1984) Motor neurone excitability during antidromically evoked inhibition after administration of a thyrotropin releasing hormone ( TRH) analogue. Neuropeptides 4: 403–411

    Google Scholar 

  • Cohan CS, Kater SB (1986) Suppression of neurite elongation and growth cone motility by electrical activity. Science 232: 1638–1640

    Article  PubMed  CAS  Google Scholar 

  • Cook JB, Nathan PW (1967) On the site of action of diazepam in spasticity in man. J Neurol Sci 5: 33–37

    Article  PubMed  CAS  Google Scholar 

  • Cooper BR, Boyer CE (1978) Stimulant action of thyrotropin-releasing hormone on cat spinal cord. Neuropharmacology 17: 153–156

    Article  PubMed  CAS  Google Scholar 

  • Cornford EM, Braun LD, Crane PD, Oldendorf WH (1978) Blood-brain barrier restriction of peptides and the low uptake of enkephalins. Endocrinology 103: 1297–1303

    Article  PubMed  CAS  Google Scholar 

  • Costa E, Guidotti A (1979) Molecular mechanisms in the receptor action of benzodiazepines. Ann Rev Pharmacol Toxicol 19: 531–545

    Article  CAS  Google Scholar 

  • Cotman CW, Monaghan DT, Ottersen OP, Storm-Mathisen J (1987) Anatomical organization of excitatory amino acid receptors and their pathways. Trends Neurosci 10: 273–280

    Article  CAS  Google Scholar 

  • Couratier P, Hugon J, Sindon P, Vallet JM, Dumas M (1993) Cell culture evidence for neuronal degeneration in amyotrophic lateral sclerosis being linked to glutamate AMPA/kainate receptors. Lancet 341: 265–268

    Article  PubMed  CAS  Google Scholar 

  • Crews LL, Wigston DJ (1990) The dependence of motoneurons on their target muscle during postnatal development of the mouse. J Neurosci 10: 1643–1653

    PubMed  CAS  Google Scholar 

  • Cullheim S, Kellerth JO, Conradi S (1977) Evidence for direct synaptic interactions between cat spinal alpha motoneurons via the recurrent axon collaterals; a morphological study using intracellular injection of horseradish peroxidase. Brain Res 132: 1–10

    Article  PubMed  CAS  Google Scholar 

  • Davidoff RA (1985) Antispasticity drugs: mechanisms of action. Ann Neurol 17: 107–116

    Article  PubMed  CAS  Google Scholar 

  • Davies J (1989) Effects of tizanidine, eperisone and afloqualone on feline dorsal horn neuronal responses to peripheral cutaneous noxious and innocuous stimuli. Neuropharmacology 28: 1357–1362

    Article  PubMed  CAS  Google Scholar 

  • de Belleroche J, Recordati A, Rose FC (1984) Elevated levels of amino acids in the CSF of motor neurone disease patients. Neurochem Pathol 2: 106–111

    Article  Google Scholar 

  • de Belleroche J, Lane RJM, Bandopadhyay R, Clifford Rose F (1990) Abnormalities in amino acid metabolism in amyotrophic lateral sclerosis. In; Clifford Rose F, Norris FH (eds) Amyotrophic lateral sclerosis. New advances in toxicology and epidemiology. Smith-Gordon, London, pp 261–264

    Google Scholar 

  • de Koning P, Wieneke GH, van der Most van Spijk D, et al (1988) Estimation of the number of motor units based on macro-EMG. J Neurol Neurosurg Psychiatry 51: 403–411

    Article  PubMed  Google Scholar 

  • Delfs J, Friend J, Ishimoto S, Saroff D (1989) Ventral and dorsal horn acetylcholinesterase neurons are maintained in organotypic cultures of postnatal rat spinal cord explants. Brain Res 488: 31–42

    Article  PubMed  CAS  Google Scholar 

  • Delwaide PJ (1988) Electrophysiological exploration of the human anterior horn. Clinical implications. Rev Neurol 144: 656–659

    PubMed  CAS  Google Scholar 

  • Delwaide PJ, Schoenen J (1985) The effects of TRH on F-waves recorded from antagonistic muscles in human subjects. Ann Neurol 18: 366–367

    Article  PubMed  CAS  Google Scholar 

  • Delwaide PJ, Schoenen J, Burton L (1983) Central actions of neurotrophic drugs assessed by reflex studies in man. In: Desmedt JE (ed) Motor control mechanisms in health and disease. Raven Press, New York, pp 977–996

    Google Scholar 

  • Dengler R, Konstanzer A, Küther G, Hesse S, Wolf W, Struppler A (1990) Amyotrophic lateral sclerosis: macro-EMG and twitch forces of single motor units. Muscle Nerve 13: 545–550

    Article  PubMed  CAS  Google Scholar 

  • DePaul R, Abbs JH, Caligiuri M, Gracco VL, Brooks BR (1988) Hypoglossal, trigeminal, and facial motoneuron involvement in amyotrophic lateral sclerosis. Neurology 38: 281–283

    PubMed  CAS  Google Scholar 

  • Dietl MM, Sanchez M, Probst A, Palacios JM (1989) Substance P receptors in the human spinal cord: decrease in amyotrophic lateral sclerosis. Brain Res 483: 39–49

    Article  PubMed  CAS  Google Scholar 

  • Duncan MW, Steele JC, Kopin IJ, Markey SP (1990) 2-amino-3-(methylamino)-propanoic acid (BMAA) in cycad flour: an unlikely cause of amyotrophic lateral sclerosis and parkinsonism-dementia of Guam. Neurology 40:767–772

    PubMed  CAS  Google Scholar 

  • Dutar P, Nicoll RA (1988) A physiological role for GABAb receptors in the central nervous system. Nature 332: 156–158

    Article  PubMed  CAS  Google Scholar 

  • Eisen A (1987) Electromyography in disorders of muscle tone. Can J Neurol Sci 14: 501–505

    PubMed  CAS  Google Scholar 

  • Ellis KO, Bryant SH (1972) Excitation contraction uncoupling in skeletal muscle by dantrolene sodium. Naunyn Schmiedebergs Arch Pharmacol 274: 107–109

    Article  PubMed  CAS  Google Scholar 

  • Engel WK, Siddique T, Nicoloff JT(1983) Effect on weakness and spasticity in amyotrophic lateral sclerosis of thyrotropin-releasing hormone. Lancet ii:73–75

    Article  Google Scholar 

  • Engel WK (1989) High-dose TRH treatment of neuromuscular diseases: summary of mechanisms and critique of clinical studies. Summary of section IX. In: Metcalf G, Jackson IMD (eds) Thyrotrophin- releasing hormone: biomedical significance. Ann NY Acad Sci 553: 462–472

    Google Scholar 

  • Ermisch A, Ruhle HJ, Landgraf R, Hess J (1985) Blood-brain barrier and peptides. J Cereb Blood Flow Metab 5: 350–357

    Article  PubMed  CAS  Google Scholar 

  • Everts ME, Van Hardeveld C (1987) Effects of dantrolene on force development in slow- and fast-twitch muscle of euthyroid, hypothyroid and hyperthyroid rats. Br J Pharmacol 92: 47–54

    PubMed  CAS  Google Scholar 

  • Faden AI, Jacobs TP, Holaday JW (1981) Thyrotropin-releasing hormone improves neurologic recovery after spinal trauma in cats. N Engl J Med 305: 1063–1067

    Article  PubMed  CAS  Google Scholar 

  • Faigle JW, Keberle H (1972) The chemistry and kinetics of Lioresal. Postgrad Med J 48: 9–13

    PubMed  CAS  Google Scholar 

  • Farquhar R, Part NJ (1988) The effect of dantrolene sodium on the discharge of alpha and gamma motor neurones to the soleus muscle in the decerebrate rat. Br J Pharmacol 93: 257–266

    PubMed  CAS  Google Scholar 

  • Frank E (1987) The influence of neuronal activity on patterns of synaptic connections. Trends Neurosci 10: 188–189

    Article  Google Scholar 

  • Freedman J, Hokfelt T, Post C et al. (1989) Immunohistochemical and behavioral analysis of spinal lesions induced by a substance P antagonist and protection by thyrotropin-releasing hormone. Exp Brain Res 74: 279–292

    Article  PubMed  CAS  Google Scholar 

  • Fung SJ, Barnes CD (1987) Membrane excitability changes in hindlimb motoneurons induced by stimulation of the locus coeruleus in cats. Brain Res 402: 230–242

    Article  PubMed  CAS  Google Scholar 

  • Gibson SJ, Polak JM, Katagiri T et al. (1988) A comparison of the distributions of eight peptides in spinal cord from normal controls and cases of motor neurone disease with special reference to Onuf’s nucleus. Brain Res 474: 255–278

    Article  PubMed  CAS  Google Scholar 

  • Gogan P, Gueritaud JP, Horcholle-Bossavit G, Tyc-Dumont S (1977) Direct excitatory interactions between spinal motoneurons of the cat. J Physiol 272: 755–767

    PubMed  CAS  Google Scholar 

  • Goonetilleke A, Modarres-Sadeghi H, Guiloff RJ (1994) Accuracy, reproductibility and variability of hand-held dynamometry in motor neuron disease. J Neurol Neurosurg Psychiatr 57: 326–332

    Article  PubMed  CAS  Google Scholar 

  • Grenningloh G, Rienitz A, Schmitt B et al. (1987) The strychnine-binding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptors. Nature 328: 215–220

    Article  PubMed  CAS  Google Scholar 

  • Griggs RC, Donahue KM, Utell MJ et al. (1981) Evaluation of pulmonary function in neuromuscular disease. Arch Neurol 38: 9–12

    PubMed  CAS  Google Scholar 

  • Guiloff RJ (1987) Thyrotropin-releasing hormone and motor neurone disease. Rev Neurosci 1: 201–219

    Article  PubMed  CAS  Google Scholar 

  • Guiloff RJ (1989) Use of TRH analogues in motor neurone disease. In: Metcalf G, Jackson IMD (eds) Thyrotropin-releasing hormone: biomedical significance. Annals of the New York Academy of Sciences, New York, pp 399–421

    Google Scholar 

  • Guiloff RJ, Eckland DJ (1987) Observations on the clinical assessment of patients with motor neuron disease. Experience with a TRH analogue. Neurol Clin 5: 171–192

    Google Scholar 

  • Guiloff RJ, Modarres-Sadeghi H (1991) Preferential generation of recurrent responses by groups of motor neurons in man. Conventional and single unit F-wave studies. Brain 114: 1771–1801

    Google Scholar 

  • Guiloff RJ, Eckland DJ, Demaine C, Hoare RC, MacRae KD, Lightman SL (1987a) Controlled acute trial of a thyrotrophin-releasing hormone analogue (RX77368) in motor neuron disease. J Neurol Neurosurg Psychiatry 50: 1359–1370

    Article  PubMed  CAS  Google Scholar 

  • Guiloff RJ, Stalberg E, Eckland DJ, Lightman SL (1987b) Electrophysiological observations in patients with motor neuron disease receiving a thyrotropin-releasing hormone analogue (RX77368). J Neurol Neurosurg Psychiatry 50: 1633–1640

    Article  PubMed  CAS  Google Scholar 

  • Guiloff RJ, Modarres-Sadeghi H, Stalberg E, Rogers H (1988) Short-term stability of single motor unit recordings in motor neuron disease: a macro EMG study. J Neurol Neurosurg Psychiatry 51: 671–676

    Article  PubMed  CAS  Google Scholar 

  • Guiloff RJ, Modarres-Sadeghi H, Rogers H (1990) Motor neurone disease: aims and assessment methods in trial design. In: Clifford Rose F (ed) Methodologic problems in clinical neurologic trials: amyotrophic lateral sclerosis, vol 1. Demos, New York, pp 19–31

    Google Scholar 

  • Hainaut K, Desmedt JE (1975) Effect of dantrolene sodium on calcium movements in single muscle fibres. Nature 252: 728–729

    Article  Google Scholar 

  • Harrison GG (1988) Malignant hyperthermia. Dantrolene-dynamics and kinetics. Br J Anaesth 60: 279–286

    Article  PubMed  CAS  Google Scholar 

  • Hassan N, McLellan DL (1980) Double-blind comparison of single doses of DS 103–282, baclofen and placebo for suppression of spasticity. J Neurol Neurosurg Psychiatry 43: 1132–1136

    Article  PubMed  CAS  Google Scholar 

  • Hawkins EF, Beydoun SR, Haun CK, Engel WK (1986) Analogs of thyrotropin-releasing hormone: hypotheses relating receptor binding to net excitation of spinal lower motor neurons. Biochem Biophys Res Commun 138: 1184–1190

    Article  PubMed  CAS  Google Scholar 

  • Hawkins EF, Engel WK (1985) Analog specificity of the thyrotropin-releasing hormone receptor in the central nervous system: possible clinical implications. Life Sci 36: 601–611

    Article  PubMed  CAS  Google Scholar 

  • Helke CJ, Sayson SC, Keeler JR, Charlton CG (1986) Thyrotropin-releasing hormone-immunoreactive neurons project from the ventral medulla to the intermediolateral cell column: partial coexistence with serotonin. Brain Res 38: 1–7

    Article  Google Scholar 

  • Hillel AD, Miller RM, Yorkston K, McDonald E, Norris FH, Konikow N (1989) Amyotrophic lateral sclerosis severity scale. Neuroepidemiology 8: 142–150

    Article  PubMed  CAS  Google Scholar 

  • Hoogstraten MC, van der Ploeg RJ, van der Burg W, Vreeling A, van Marie S, Minderhoud JM (1988) Tizanidine versus baclofen in the treatment of spasticity in multiple sclerosis patients. Acta Neurol Scand 77: 224–230

    Article  PubMed  CAS  Google Scholar 

  • Hugon J, Vallat JM, Spencer PS, Leboutet MJ, Barthe D (1989) Kainic acid induces early and delayed degenerative neuronal changes in rat spinal cord. Neurosci Lett 104: 258–262

    Article  PubMed  CAS  Google Scholar 

  • Lies JF, Roberts RC (1986) Presynaptic inhibition of monosynaptic reflexes in the lower limbs of subjects with upper motoneuron disease. J Neurol Neurosurg Psychiatry 49: 937–944

    Article  Google Scholar 

  • Jackson IMD, Adelman LS, Munsat TL, Forte S, Lechan RM (1986) Amyotrophic lateral sclerosis: thyrotropin-releasing hormone and histidyl proline diketopiperazine in the spinal cord and cerebrospinal fluid. Neurology 36: 1218–1223

    PubMed  CAS  Google Scholar 

  • Jami L, Murthy KSK, Petit J et al. (1983) Action of dantrolene sodium on single motor units of cat muscle in vivo. Brain Res 261: 285–294

    Article  PubMed  CAS  Google Scholar 

  • Jehanli A, Harrison R, Lunt GG, Guiloff RJ (1987) Effect of TRH analogue RX77368 on spinal cord neurons in culture. J Neurol Neurosurg Psychiatry 51: 946

    Google Scholar 

  • Johnson JW, Ascher P (1987) Glycine potentiates the N-MDA response in cultured mouse brain neurons. Nature 325: 529–531

    Article  PubMed  CAS  Google Scholar 

  • Jones RF, Burke D, Marosszeky JF, Gillies JD (1970) A new agent for the control of spasticity. J Neurol Neurosurg Psychiatry 33: 464–468

    Article  PubMed  CAS  Google Scholar 

  • Katz R, Pierrot-Deseilligny E (1982) Recurrent inhibition of alpha-motoneurons in patients with upper motor neuron lesions. Brain 105: 103–124

    Article  PubMed  CAS  Google Scholar 

  • Kerr DIB, Ong J, Prager RH, Gynther BD, Curtis DR (1987) Phaclofen: a peripheral and central baclofen antagonist. Brain Res 405: 150–154

    Article  PubMed  CAS  Google Scholar 

  • Kleijn E van der (1969) Protein binding and lipophilic nature of ataractics of the meprobamate — and diazepine — group. Arch Int Pharmacodyn Ther 179: 225–250

    PubMed  Google Scholar 

  • Klockgether T, Schwartz M, Wullner U, Turski L, Sontag K-H (1989) Myorelaxant effect after intrathecal injection of antispastic drugs in rats. Neurosci Lett 97: 221–226

    Article  PubMed  CAS  Google Scholar 

  • Knutsson E (1983) Analysis of gait and isokinetic movement for evaluation of antispastic drugs or physical therapies. In: Desmedt JE (ed) Motor control mechanisms in health and disease. Raven Press, New York, pp 1013–1034

    Google Scholar 

  • Knutsson E (1985) Quantification of spasticity. In: Struppler A, Weindl A (eds) Electromyography and evoked potentials. Theories and applications. Springer, Berlin Heidelberg New York, pp 84–91

    Google Scholar 

  • Koh J, Goldberg MP, Hartley DM, Choi DW (1990) Non-NMDA receptor mediated neurotoxicity in cortical culture. J Neurosci 10: 693–705

    PubMed  CAS  Google Scholar 

  • Kozachuk WE, Mitsumoto H, Salanga VD, Beck GJ, Wilber JF (1987) Thyrotropin-releasing hormone ( TRH) in murine motor neuron disease (the wobbler mouse ). J Neurol Sci 78: 253–260

    Google Scholar 

  • Krnjevic K (1981) Transmitters in motor systems. In: Handbook of physiology, section 1: the nervous system, vol. II. Motor control, part 1. American Physiological Society, Bethesda, pp 107–154

    Google Scholar 

  • Krnjevic K, Xu YZ (1989) Dantrolene suppresses the hyperpolarization or outward current observed during anoxia in hippocampal neurons. Can J Physiol Pharmacol 67: 1602–1604

    Article  PubMed  CAS  Google Scholar 

  • Kurz EM, Sengelaub DR, Arnold AP (1986) Androgens regulate the dentritic length of mammalian motor neurons in adulthood. Science 232: 395–398

    Article  PubMed  CAS  Google Scholar 

  • Kuypers HGJM (1973) The anatomical organisation of the descending pathways and their contributions to motor control especially in primates. In: Desmedt S (ed) New developments in electromyography and clinical neurophysiology. Karger, Basel, pp 38–68

    Google Scholar 

  • Lapierre Y, Bouchard S, Tansey C, Gendron D, Barkas WJ, Francis GS (1987) Treatment of spasticity with tizanidine in multiple sclerosis. Can J Neurol Sci 14: 513–517

    PubMed  CAS  Google Scholar 

  • La Spada AR, Wilson EM, Lubahn DB et al. (1991) Androgen receptor mutations in X-linked spinal and bulbar muscular atrophy. Nature 352: 77–79

    Article  PubMed  Google Scholar 

  • Latash ML, Penn RD, Corcos DM, Gottlieb GL (1989) Short-term effects of intrathecal baclofen in spasticity. Exp Neurol 103: 165–172

    Article  PubMed  CAS  Google Scholar 

  • Lazorthes Y, Sallerin-Caute B, Verdie JC, Bastide R (1990) Chronic intrathecal baclofen administration for control of severe spasticity. J Neurosurg 72: 393–402

    Article  PubMed  CAS  Google Scholar 

  • Lee KC, Carson L, Kinnin E, Patterson V (1989) The Ashworth scale: a reliable and reproducible method of measuring spasticity. Neurology 39: 143–143

    Google Scholar 

  • Lee WA, Boughton A, Rymer WZ (1987) Absence of stretch reflex gain enhancement in voluntarily activated spastic muscle. Exp Neurol 98: 317–335

    Article  PubMed  CAS  Google Scholar 

  • Leslie GC, Part NJ (1981) The effect of dantrolene sodium on intrafusal muscle fibres in the rat soleus muscle. J Physiol 318: 73–83

    PubMed  CAS  Google Scholar 

  • Lewis CA, Ahmed Z, Faber DS (1989) Characteristics of glycine-activated conductances in cultured medullary neurons from embryonic rat. Neurosci Lett 96: 185–190

    Article  PubMed  CAS  Google Scholar 

  • Lipton SA, Kater SB (1989) Neurotransmitter regulation of neuronal outgrowth plasticity and survival. Trends Neurosci 12: 265–270

    Article  PubMed  CAS  Google Scholar 

  • Ludolph AC, Hugon J, Dwivedi MP, Schaumburg HH, Spencer PS (1987) Studies on the etiology and pathogenesis of motor neuron diseases. I. Clinical findings in established cases of lathyrism. Brain 110: 149–165

    Google Scholar 

  • MacDermott AB, Dale N (1987) Receptors, ion channels and synaptic potentials underlying the integrative actions of excitatory amino acids. Trends Neurosci 10: 280–284

    Article  CAS  Google Scholar 

  • MacDonald JF, Morris ME (1984) Lathyrus excitotoxin: mechanism of neuronal excitation by L-2-ox- alylamino-3-amino- and L-3-oxalylamino-propionic acid. Exp Brain Res 57: 158–166

    Article  PubMed  CAS  Google Scholar 

  • Macdonald RL, Twyman RE (1990) GABA/benzodiazepine receptors and glycine receptors. In: Walton J (ed) Current opinion in neurology and neurosurgery. Current Science, London, pp 538–543

    Google Scholar 

  • MacDonnel RA, Talalla A, Swash M, Grundy D (1989) Intrathecal baclofen and the H-reflex. J Neurol Neurosurg Psychiatry 52: 1110–1112

    Article  Google Scholar 

  • Manaker S, Caine SB, Winokur A (1988) Alterations in receptors for thyrotropin-releasing hormone,serotonin, and acetylcholine in amyotrophic lateral sclerosis. Neurology 38: 1464–1474

    PubMed  CAS  Google Scholar 

  • Manaker S, Winokur A, Rhodes CH, Rainbow TC (1985) Autoradiographic localization of thyrotropin-releasing hormone ( TRH) receptors in human spinal cord. Neurology 35: 328–332

    Google Scholar 

  • Marcucci F, Guaitani A, Fanelli R, Mussini E, Garattini S (1971) Metabolism and anticonvulsant activity of diazepam in guinea pigs. Biochem Pharmacol 20: 1711–1713

    Article  CAS  Google Scholar 

  • Mattson MP (1988) Neurotransmitters in the regulation of neuronal cytoarchitecture. Brain Res 472: 179–212

    PubMed  CAS  Google Scholar 

  • Mayer ML, Vyklicky L, Clements J (1989) Regulation of NMD A receptor desensitization in mouse hippocampal neurons by glycine. Nature 338: 425–427

    Article  PubMed  CAS  Google Scholar 

  • Mazzocchio R, Rossi A (1989) Recurrent inhibition in human spinal spasticity. Ital J Neurol Sci 10: 337–347

    Article  PubMed  CAS  Google Scholar 

  • McComas AJ, Fawcett PRW, Campbell MJ, Sica REP (1971) Electrophysiological estimation of the number of motor units within a human muscle. J Neurol Neurosurg Psychiatry 34: 121–131

    Article  PubMed  CAS  Google Scholar 

  • McGeer EG (1990) Neurotransmitters. In: Walton J (ed) Current opinion in neurology and neurosurgery. Current Science, London, pp 530–537

    Google Scholar 

  • McManaman JL, Oppenheim RW, Prevette D, Marchetti D (1990) Rescue of motoneurons from cell death by a purified skeletal muscle polypeptide: effects of the ChAT development factor, CDF. Neuron 4: 891–898

    Article  PubMed  CAS  Google Scholar 

  • Medical Research Council (1976) Aids to the examination of the peripheral nervous system. London (Memorandum No 45)

    Google Scholar 

  • Meinck HM, Benecke R, Kuster S et al. (1983) Cutaneomuscular (flexor) reflex organization in normal men and in patients with motor disorders. In: Desmedt JE (ed) Motor control mechanisms in health and disease. Raven Press, New York, pp 787–796

    Google Scholar 

  • Meinck HM, Benecke R, Conrad B (1985) Cutaneo-muscular control mechanisms in health and disease: possible implications on spasticity. In: Struppler A, Weindl A (eds) Electromyography and evoked potentials. Theories and applications. Springer, Berlin Heidelberg New York, pp 75–83

    Google Scholar 

  • Mens WBJ, Witter A, Greidanus TBVW (1983) Penetration of neurohypophyseal hormones from plasma into cerebrospinal fluid (CSF): half-times of disappearance of these neuropeptides from CSF. Brain 262: 143–149

    Article  CAS  Google Scholar 

  • Meyer M, Adorjani C (1983) Quantification of the effects of muscle relaxant drugs in man by tonic stretch reflex. In: Desmedt JE (ed) Motor control mechanisms in health and disease. Raven Press, New York, pp 997–1011

    Google Scholar 

  • Mitsuma T, Nogimori T (1983) Influence of the route of administration on thyrotropin-releasing hormone concentration in the mouse brain. Experientia 39: 620–622

    Article  PubMed  CAS  Google Scholar 

  • Modarres-Sadeghi H, Rogers H, Emami J, Guiloff RJ (1988) Subacute administration of a TRH analogue (RX77368) in motoneuron disease: an open study. J Neurol Neurosurg Psychiatry 51: 1146–1157

    Article  PubMed  CAS  Google Scholar 

  • Modarres-Sadeghi H, Guiloff RJ (1990) Comparative efficacy and safety of intravenous and oral administration of a TRH analogue (RX77368) in motor neuron disease. J Neurol Neurosurg Psychiatry 53: 944–947

    Article  PubMed  CAS  Google Scholar 

  • Morgan KG, Bryant SH (1977) The mechanism of action of dantrolene sodium. J Pharmacol Exp Ther 201: 138–147

    PubMed  CAS  Google Scholar 

  • Morin C, Pierrot-Deseilligny E (1988) Spinal mechanism of the antispastic action of TRH in patients with amyotrophic lateral sclerosis. Rev Neurol 144: 701–703

    PubMed  CAS  Google Scholar 

  • Munsat TL (1989) Quantification of neurologic deficit. Butterworth, London

    Google Scholar 

  • Munsat TL, Taft J, Jackson IMD (1987) Pharmacokinetics of intrathecal thyrotropin-releasing hormone. Neurology 37: 597–601

    PubMed  CAS  Google Scholar 

  • Nakashima K, Rothwell JC, Day BL, Thompson PD, Shannon K, Marsden CD (1989) Reciprocal inhibition between forearm muscles in patients with writer’s cramp and other occupational cramps, symptomatic hemidystonia and hemiparesis due to stroke. Brain 112: 681–697

    Article  PubMed  Google Scholar 

  • Nicoll RA (1977) Excitatory action of TRH on spinal motor neurones. Nature 265: 242–243

    Article  PubMed  CAS  Google Scholar 

  • Nicoll RA (1978) The action of thyrotropin-releasing hormone, substance P and related peptides on frog spinal motor neurones. J Pharmacol Exp Ther 207: 817–824

    PubMed  CAS  Google Scholar 

  • Norris FH, Callachini PR, Fallat RJ et al. (1974) Administration of guanidine in amyotrophic lateral sclerosis. Neurology 24: 721–728

    PubMed  Google Scholar 

  • Obenaus A, Mody I, Baimbridge KG (1989) Dantrolene-Na ( Dantrium) blocks induction of long-term potentiation in hippocampal slices. Neurosci Lett 98: 172–178

    Google Scholar 

  • Ochs G, Struppler A, Meyerson BA et al. (1989) Intrathecal baclofen for long-term treatment of spasticity: a multi-centre study. J Neurol Neurosurg Psychiatry 52: 933–939

    Article  PubMed  CAS  Google Scholar 

  • Olney JW (1971) Glutamate-induced neuronal necrosis in the infant mouse hypothalamus: an electron microscopic study. J Neuropathol Exp Neurol 30: 75–90

    Article  PubMed  CAS  Google Scholar 

  • Olney JW, Sharpe LG (1969) Brain lesion in an infant rhesus monkey treated with monosodium glutamate. Science 166: 386–388

    Article  PubMed  CAS  Google Scholar 

  • Ono H, Fukuda H (1982) Ventral root depolarization and spinal reflex augmentation by a TRH analog in rat spinal cord. Neuropharmacology 21: 739–744

    Article  PubMed  CAS  Google Scholar 

  • Oppenheim RW (1989) The neurotrophic theory and naturally occurring motoneuron death. Trends Neurosci 12: 252–255

    Article  PubMed  CAS  Google Scholar 

  • Palmeri A, Wiesendanger M (1990) Concomitant depression of locus coeruleus neurons and of flexor reflexes by an alpha2-adrenergic agonist in rats: a possible mechanism for an alpha2-mediated muscle relaxation. Neuroscience 34: 177–187

    Article  PubMed  CAS  Google Scholar 

  • Pawlowski L, Ruczynska J, Przegalinski E (1980) The effect of thyroliberin and some of its analogues on the hind limb flexor reflex in the spinal rat. Pol J Pharmacol Pharmacy 32: 539–550

    CAS  Google Scholar 

  • Pellkofer M, Paulig M (1989) Comparative double-blind study of the effectiveness and tolerance of baclofen, tetrazepam and tizanidine in spastic movement disorders of the lower extremities. Med Klin 84: 5–8

    CAS  Google Scholar 

  • Penn RD, Kroin JS (1987) Continuous intrathecal baclofen infusion for treatment of spasticity. J Neurosurg 66: 181–185

    Article  PubMed  CAS  Google Scholar 

  • Peroutka SJ (1988) 5-Hydroxytryptamine receptor subtypes: molecular, biochemical and physiological characterization. Trends Neurosci 11:496–500

    Article  PubMed  CAS  Google Scholar 

  • Perry TL, Krieger C, Hansen S, Eisen A (1990) Amyotrophic lateral sclerosis: amino acid levels in plasma and cerebrospinal fluid. Ann Neurol 28: 12–17

    Article  PubMed  CAS  Google Scholar 

  • Phillis JW, Kirkpatrick JR (1979) Actions of various gastrointestinal peptides on the isolated amphibian spinal cord. Can J Physiol Pharmacol 57: 887–889

    Article  PubMed  CAS  Google Scholar 

  • Phillis JW, Kirkpatrick JR (1980) The actions of motolin, luteinizing hormone-releasing hormone, cholecystokinin, somatostatin, vasoactive intestinal peptide, and other peptides on rat cerebral cortical neurons. Can J Physiol Pharmacol 58: 612–623

    Article  PubMed  CAS  Google Scholar 

  • Pierrot-Deseilligny E, Bussel B, Held JP, Katz R (1976) Excitability of human motoneurones after discharge in a conditioning reflex. Electroencephalogr Clin Neurophysiol 40: 279–287

    Article  PubMed  CAS  Google Scholar 

  • Pierrot-Deseilligny E, Engel WK, Fardeau M (1985) Effect of high dose TRH (HD-TRH) on H-reflex vibratory inhibition and H-reflex threshold in amyotrophic lateral sclerosis (ALS) patients. Neurology 35 (Suppl 1): 128

    Google Scholar 

  • Pierrot-Deseilligny E, Katz R, Hultborn H (1983) Functional organization of recurrent inhibition in man: changes preceding and accompanying voluntary movements. In: Desmedt JE (ed) Motor control mechanisms in health and disease, advances in neurology. Raven Press, New York, pp 443–458

    Google Scholar 

  • Plaitakis A (1990a) Glutamate dysfunction and selective motor neuron degeneration in amyotrophic lateral sclerosis: a hypothesis. Ann Neurol 28: 3–8

    Article  PubMed  CAS  Google Scholar 

  • Plaitakis A (1990b) Glutamate alterations in amyotrophic lateral sclerosis. In: Clifford Rose F, Norris FH eds) Amyotrophic lateral sclerosis. New advances in toxicology and epidemiology. Smith-Gordon, London, pp 265

    Google Scholar 

  • Plaitakis A, Caroscio JT (1987) Abnormal glutamate metabolism in amyotrophic lateral sclerosis. Ann Neurol 22: 575–579

    Article  PubMed  CAS  Google Scholar 

  • Plaitakis A, Constantakakis E, Smith J (1988a) The neuroexcitotoxic amino acids glutamate and aspartate are altered in the spinal cord and brain in amyotrophic lateral sclerosis. Ann Neurol 24: 446–449

    Article  PubMed  CAS  Google Scholar 

  • Plaitakis A, Smith J, Mandeli J, Yahr MD (1988b) Pilot trial of branched-chain amino acids in amyotrophic lateral sclerosis. Lancet i: 1015–1018

    Article  Google Scholar 

  • Plaitakis A, Mandeli J, Smith J, Yahr MD (1988c) Branched-chain aminoacids in amyotrophic lateral sclerosis. Lancet ii:680–681

    Google Scholar 

  • Popper P, Micevych PE (1989) The effect of castration on calcitonin gene-related peptide in spinal motor neurons. Neuroendocrinology 50: 338–343

    Article  PubMed  CAS  Google Scholar 

  • Potvin AR, Tourtellotte WW (1985) Quantitative examination of neurologic functions, vols I and I I. CRC ress, Boca Raton

    Google Scholar 

  • Powers RK, Marder-Meyer J, Rymer WZ (1988) Quantiative relations between hypertonia and stretch reflex threshold in spastic hemiparesis. Ann Neurol 23: 115–124

    Article  PubMed  CAS  Google Scholar 

  • Powers RK, Campbell DL, Rymer WZ (1989) Stretch reflex dynamics in spastic elbow flexor muscles. Ann Neurol 25: 32–42

    Article  PubMed  CAS  Google Scholar 

  • Pritchett DB, Luddens H, Seeburg PH (1989) Type I and Type II GABAA-benzodiazepine receptors produced in transfected cells. Science 245: 1389–1392

    Article  PubMed  CAS  Google Scholar 

  • Prochazka A, Hulliger M (1983) Muscle afferent function and its significance for motor control mechanisms during voluntary movements in cat, monkey and man. In: Desmedt JE (ed) Motor control mechanisms in health and disease. Raven Press, New York, pp 93–132

    Google Scholar 

  • Røed A (1989) Effects of dantrolene on twitch and tetanic contractions of the rat phrenic nerve-diaphragm preparation. Arch Int Pharmacodyn Ther 297: 260–271

    PubMed  Google Scholar 

  • Ross J, White SR (1986) Modulation of hypoglossal motor neurone excitability by thyrotropin releasing hormone ( TRH) and serotonin. Soc Neurosci Abstr 12: 153

    Google Scholar 

  • Rothman SM, Olney JW (1987) Excitotoxicity and the MDA receptor. Trend Neurosci 10: 244–302

    Article  Google Scholar 

  • Rothstein JD, Tsai G, Kuncl RW et al. (1990) Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Ann Neurol 28: 18–25

    Article  PubMed  CAS  Google Scholar 

  • Schmidt RF, Vogel ME, Zimmermann M (1967) Die Wirkung von Diazepam auf die prasynaptische Hemmung und andere Ruckenmarksreflexe. Naunyn Schmiedebergs Arch Pharmacol 258: 69–82

    CAS  Google Scholar 

  • Schmidt-Achert KM, Askanas V, Engel WK (1984) Thyrotropin-releasing hormone enhances choline acetyltransferase and creatine kinase in cultured spinal ventral horn neurons. J Neurochem 43: 586 — 589

    Article  PubMed  CAS  Google Scholar 

  • Schoenen J (1988) Neuroanatomie chimique de la moelle épinière humaine. Rev Neurol 144: 630–642

    PubMed  CAS  Google Scholar 

  • Schofield PR, Darlison MG, Fujita N et al. (1987) Sequence and functional expression of the GABAA receptor show a ligand-gated receptor super-family. Nature 328: 221–227

    Article  PubMed  CAS  Google Scholar 

  • Schwartz MA, Koechlin BA, Postma E, Palmer S, Krol G (1965) Metabolism of diazepam in rat, dog and man. J Pharmacol Exp Ther 149: 423–435

    PubMed  CAS  Google Scholar 

  • Seeburg PH, Pritchett DB, Luddens H, Shivers BD (1990) Structural and functional heterogeneity of GABAA receptors. Neurochem Abst 21: 191

    Google Scholar 

  • Sendtner M, Schmalbruch H, Stockli KA et al. (1992) Ciliary neurotrophic factor prevents degeneration of motor neurons in mouse mutant progressive neuropathy. Nature 358: 502–504

    Article  PubMed  CAS  Google Scholar 

  • Sengelaub DR, Arnold AP (1989) Hormonal control of neuron number in sexually dimorphic spinal nuclei of the rat. I. Testosterone-regulated death in the dorsolateral nucleus. J Comp Neurol 280: 622–629

    Google Scholar 

  • Sengelaub DR, Jordan CL, Kurz EM, Arnold AP (1989a) Hormonal control of neuron number in sexually dimorphic spinal nuclei of the rat. II. Development of the spinal nucleus of the bulbocavernosus in androgen-insensitive ( Tfm) rats. J Comp Neurol 280: 630–636

    Google Scholar 

  • Sengelaub DR, Nordeen EJ, Nordeen KW, Arnold AP (1989b) Hormonal control of neuron number in sexually dimorphic spinal nuclei of the rat. ÜI. Differential effects of the androgen dihydrotestoster- one. J Comp Neurol 280: 637–644

    Google Scholar 

  • Siegfried J, Rea GL (1987) Intrathecal application of baclofen in the treatment of spasticity. Acta Neurochir (Suppl) 39: 121–123

    CAS  Google Scholar 

  • Sillevis Smitt PAE, DeJong JMBV (1989) Animal models of amyotrophic lateral sclerosis and the spinal muscular atrophies. J Neurol Sci 91: 231–258

    Article  PubMed  CAS  Google Scholar 

  • Skerritt JH, Johnston GAR (1983) Enhancement of GAB A binding by benzodiazepines and related anxiolytics. Eur J Pharmacol 89: 139–198

    Article  Google Scholar 

  • Spencer PS (1990) Linking cycad to the etiology of Western Pacific amyotrophic lateral sclerosis. In: Clifford Rose F, Norris FH (eds) Amyotrophic lateral sclerosis: new advances in toxicology and epidemiology. Smith-Gordon, London, p 29–34

    Google Scholar 

  • Spencer PS, Ludolph A Dwivedi MP, Roy DN, Hugon J, Schaumburg HH (1986) Lathyrism: evidence for role of the neuroexcitatory amino acid BOAA. Lancet i: 1066–1067

    Article  Google Scholar 

  • Spencer PS, Nunn PB, Hugon J, Ludolph AC, Ross SM, Roy DN, Robertson RC (1987) Guam amyotrophic lateral sclerosis-parkinsonism-dementia linked to a plant excitant neurotoxin. Science 237: 517–522

    Article  PubMed  CAS  Google Scholar 

  • Stratten WP, Barnes CD (1971) Diazepam and presynaptic inhibition. Neuropharmacology 10: 685–696

    Article  PubMed  CAS  Google Scholar 

  • Strong MJ, Brown WF, Hudson AJ, Snow R (1988) Motor unit estimates in the biceps-brachialis in amyotrophic lateral sclerosis. Muscle Nerve 11: 415–422

    Article  PubMed  CAS  Google Scholar 

  • Study RE, Barker JL (1982) Diazepam and (-)pentobarbital: fluctuation analysis reveals different mechanism for potentiation of gamma-aminobutyric acid responses in cultured central neurons. Proc Natl Acad Sci USA 78: 7180–7184

    Article  Google Scholar 

  • Tahmoush AJ, Heiman-Patterson TD, Tahmoush GP, Francis ME (1985) Single fibre electromyography ( SFEMG) studies in patients with amyotrophic lateral sclerosis before and during TRH infusion. Muscle Nerve 8: 613–614

    Google Scholar 

  • Tanaka R (1983) Reciprocal la inhibitory pathway in normal man and in patients with motor disorders. In: Desmedt JE (ed) Motor control mechanisms in health and disease. Raven Press, New York, pp 433–441

    Google Scholar 

  • Thilmann AF, Fellows SJ, Garms E (1991) The mechanism of spastic muscle hypertonus. Variation in reflex gain over the time course of spasticity. Brain 114: 233–244

    Google Scholar 

  • Thomson AM (1989) Glycine modulation of the NMDA receptor/channel complex. Trends in Neurosci 12: 349–353

    Article  CAS  Google Scholar 

  • Thomson AM, Walker Ve, Flynn DM (1989) Glycine enhances NMDA-receptor mediated synaptic potentials in neocortical slices. Nature 338: 422–424

    Article  PubMed  CAS  Google Scholar 

  • Tse FL, Jaffe JM, Bhuta S (1987) Pharmacokinetics of orally administered tizanidine in healthy volunteers. Fundam Clin Pharmacol 1: 479–488

    Article  PubMed  CAS  Google Scholar 

  • Turski L, Klockgether T, Schwartz M, Turski WA, Sontag K-H (1990) Substantia nigra: a site of action of muscle-relaxant drugs. Ann Neurol 28: 341–348

    Article  PubMed  CAS  Google Scholar 

  • Twyman RE, Rogers CJ, Macdonald RL (1989) Differential regulation of γ-aminobutyric acid receptor channels by diazepam and phenobarbital. Ann Neurol 25: 213–220

    Article  PubMed  CAS  Google Scholar 

  • Uchida H, Nemoto H, Kinoshita M (1986) Action of thyrotropin-releasing hormone (TRH) on the ccurrence of fibrillation potentials and miniature end plate potentials ( MEPPs) — an experimental study. J Neurol Sci 76: 125–130

    Google Scholar 

  • Van den Bergh P, Kelly JJ Jr, Adelman L, Munsat TL, Jackson IMD, Lechan RM (1987) Effect of spinal cord TRH deficiency on lower motor neuron function in the rat. Muscle Nerve 10: 397–405

    Article  PubMed  Google Scholar 

  • van den Pol AN, Gores T (1988) Glycine and glycine receptor immunoreactivity in brain and spinal cord. J Neurosci 8: 472–492

    PubMed  Google Scholar 

  • van der Ploeg RJO, Fidler V, Oosterhuis HJGH (1991) Hand-held myometry: reference values. J Neurol Neurosurg Psychiatry 54: 244–247

    Article  PubMed  Google Scholar 

  • Verrier M, MacLeod S, Ashby P (1975a) The effects of diazepam and phenobarbital. Ann Neurology 25: 213–220

    Google Scholar 

  • Verrier M, MacLeod S, Ashby P (1975b) The effects of diazepam on presynaptic inhibition in patients with complete and incomplete spinal cord lesions. Can J Neurol Sci 2: 179–184

    PubMed  CAS  Google Scholar 

  • Watkins JC, Olverman HJ (1987) Agonists and antagonists for excitatory amino acid receptors. Trends Neurosci 10: 265–272

    Article  CAS  Google Scholar 

  • Weiss JH, Koh J, Choi DW (1989) Neurotoxicity of β-N-methylamino-L-alanine (BMAA) and β-N-oxalylamino-L-alanine ( BOAA) on cultured cortical neurons. Brain Res 497: 64–71

    Google Scholar 

  • Weiss JH, Choi DW (1990) Non N-methyl-D-aspartate receptors and amyotrophic lateral sclerosis. In: Clifford Rose F, Norris FH (eds) Amyotrophic lateral sclerosis: new advances in toxicology and epidemiology. Smith-Gordon, London, pp 283–286

    Google Scholar 

  • Westlund KN, Bowker RM, Ziegler MG, Coulter JD (1984) Origins and terminations of descending noradrenergic projections to the spinal cord of monkey. Brain Res 292: 1–16

    Article  PubMed  CAS  Google Scholar 

  • White SR (1985) A comparison of the effects of serotonin, substance P and thyrotropin-releasing hormone on excitability of rat spinal motoneurons in vivo. Brain Res 335: 63–70

    Article  PubMed  CAS  Google Scholar 

  • White SR, Crane GK, Jackson DA (1989) Thyrotropin-releasing hormone (TRH) effects on spinal cord neuronal excitability. In: Metcalf G, Jackson IMD (eds) Thyrotropin-releasing hormone: biomedical significance. Ann NY Sci 553: 337–350

    Google Scholar 

  • Whitehouse PJ, Wamsley JK, Zarbin MA, Price DL, Tourtellotte WW, Kuhar MJ (1983) Amyotrophic lateral sclerosis: alterations in neurotransmitter receptors. Ann Neurol 14: 8–16

    Article  PubMed  CAS  Google Scholar 

  • Winokur A, Beckman AL (1978) Effects of thyrotropin-releasing hormone, norepinephrine and acetylcholine on the activity of neurons in the hypothalamus, septum and cerebral cortex of the rat Brain Res 150: 205–209

    CAS  Google Scholar 

  • Winokur A, Manaker S, Kreider MS (1989) TRH and TRH receptors in the spinal cord. In: Metcalf G, Jackson IMD (eds) Thyrotropin-releasing hormone: biomedical significance. Ann NY Acad Sci 553: 314–324

    Google Scholar 

  • Wright J, Rang M (1990) The spastic mouse. And the search for an animal model of spasticity in human beings. Clin Orthop 12–19

    Google Scholar 

  • Wuis EW, Rijntjes NV, Kleijn van der E (1989) Whole-body autoradiography of 14C-dantrolene in the marmoset monkey. Pharmacol Toxicol 64: 156–158

    Article  PubMed  CAS  Google Scholar 

  • Wuis EW, Dirks MJ, Vree TB, Van der Kleijn E (1990) Pharmacokinetics of baclofen in spastic patients receiving multiple oral doses. Pharmaceutisch Weekblad: Scientific Edition 12: 71–74

    Google Scholar 

  • Yarbrough GG (1976) TRH potentiates excitatory actions of acetylcholine on cerebral cortical neurones. Nature 263: 523–524

    Article  PubMed  CAS  Google Scholar 

  • Young RR (1973) The clinical significance of exteroceptive reflexes. In: Desmedt JE (ed) New developments in electromyography and clinical neurophysiology, vol 3. Karger, Basel, pp 697–712

    Google Scholar 

  • Young RR (1987) Physiologic and pharmacologic approaches to spasticity. Neurol Clin 5: 529–539

    PubMed  CAS  Google Scholar 

  • Yu W-HA (1989) Survival of motoneurons following axotomy is enhanced by lactation or by progesterone treatment. Brain Res 491: 379–382

    Article  PubMed  CAS  Google Scholar 

  • Zbinden G, Randall LO (1967) Pharmacology of benzodiazepines: laboratory and clinical correlations. Adv Pharmacol 5: 213–291

    Article  PubMed  CAS  Google Scholar 

  • Zierski J, Mueller H, Dralle D, Wurdinger T (1988) Implanted pump systems for treatment of spasticity. Acta Eurochir (Suppl) 43: 94–99

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag London Limited

About this chapter

Cite this chapter

Guiloff, R.J. (1995). Clinical Pharmacology of Motor Neurons. In: Leigh, P.N., Swash, M. (eds) Motor Neuron Disease. Springer, London. https://doi.org/10.1007/978-1-4471-1871-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1871-8_15

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1873-2

  • Online ISBN: 978-1-4471-1871-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics