Skip to main content

Toxicology of Motor Systems

  • Chapter
Motor Neuron Disease

Abstract

There is no shortage of toxic factors that have been proposed as aetiological agents in motor neuron disease. Of exogenous origin lead, mercury (elemental and organic) selenium and manganese are most cited (Tandan and Bradley 1985). The incidence of the amyotrophic lateral sclerosis (motor neuron disease)-parkinsonism-dementia complex (ALS-PD) of Guam has been related to nutritional deficiencies of calcium and magnesium resulting in the accumulation of manganese and aluminium (Garru-to and Yase 1986). Specific amino acids have been implicated in neurolathyrism (Rao et al. 1964), in Guamanian ALS-PD (Spencer et al. 1987) and more generally in neuronal death in various parts of the central nervous system that are not explicitly implicated in motor neuron disease (Olney 1978; Barinaga 1990; Perl et al. 1990). Epidemiological studies have linked exposure to organic solvents with an increased incidence of motor neuron disease (Hawkes et al. 1989), although it is likely that such substances also cause more generalised central nervous system dysfunctions (see Johnson 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agid Y, Blin J (1987) Nerve cell death in degenerative diseases of the central nervous system: clinical aspects. In: Bock G, O’Conner M (eds) Selective neuronal death. Ciba Foundation Symposium 126. Wiley, New York, pp 3–29

    Google Scholar 

  • Anon (1989) Amino acid transport and glutathione metabolism. Nutr Rev 47:26–28

    Google Scholar 

  • Anon (1990) Antagonism to neuronal cysteine uptake: a factor in neuronal damage by glutamate. Nutr Rev 48: 440–442

    Google Scholar 

  • Barinaga M (1990) Amino acids: how much excitement is too much? Science 247: 20–22

    Article  PubMed  CAS  Google Scholar 

  • Bell EA, Vega A, Nunn PB (1967) A neurotoxic amino acid in seed ofCycas circinalis. In: Whiting MG (ed) Toxicity of Cycads: Implications for neurodegenerative diseases and cancer. Fifth Conference Third World Medical Research Foundation, New York, 1988, pp XI-l-XI-4

    Google Scholar 

  • Berridge MJ, Irvine RF (1989) Inositol phosphates and cell signalling. Nature 341: 197–205

    Article  PubMed  CAS  Google Scholar 

  • Biscoe TJ, Evans RH, Headley PM, Martin M, Watkins JC (1975) Domoic and quisqualic acids are potent amino acid excitants of frog and rat spinal neurones. Nature 247: 166–167

    Article  Google Scholar 

  • Bridges RJ, Kadri MM, Monaghan DT, Nunn PB, Watkins JC, Cotman CW (1988) Inhibition of 3H-AMPA binding by the excitotoxin β-N-oxalyl-L-α,β-diaminopropionic acid. Eur J Pharmacol 145:357–359

    Article  PubMed  CAS  Google Scholar 

  • Bridges RJ, Stevens DR, Kahle JS, Nunn PB, Kadri MM, Cotman CW (1989) Structure-function studies of N-oxalyl-diaminopropionic acids and excitatory amino acid receptors: evidence that β-ODAP is a selective non-NMDA agonist. J Neurosci 9: 2073–2079

    PubMed  CAS  Google Scholar 

  • Burger PM, Mehl E, Cameron PL et al. (1989) Synaptic vesicles immunoisolated from rat cerebral cortex contain high levels of glutamate. Neuron 3: 715–720

    Article  PubMed  CAS  Google Scholar 

  • Calne DB, Eisen A, McGeer E, Spencer P (1986) Alzheimer’s disease, Parkinson’s disease, and motoneuron disease: abiotropic interaction between ageing and environment? Lancet ii: 1067-1070

    Article  Google Scholar 

  • Chase RA, Pearson S, Nunn PB, Lantos PL (1985) Comparative toxicities of a- and β-N-oxalyl- L-diaminopropionic acids to rat spinal cord. Neurosci Lett 55: 89–94

    Article  PubMed  CAS  Google Scholar 

  • Choi DW (1985) Glutamate neurotoxicity in cortical cell culture is calcium dependent. Neurosci Lett 58: 293–297

    Article  PubMed  CAS  Google Scholar 

  • Choi DW (1987) Ionic dependence of glutamate neurotoxicity. J Neurosci 7: 369–379

    PubMed  CAS  Google Scholar 

  • Choi DW, Rothman SM (1990) The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Ann Rev Neurosci 13 171–82

    Article  PubMed  CAS  Google Scholar 

  • Cliff J, Lundqvist P, Martensson J, Rosling H, Sorbo B (1985) Association of high cyanide and low sulphur intake in cassava-induced spastic paraparesis. Lancet ii:1211–1213

    Article  Google Scholar 

  • Cooper AJL (1983) Biochemistry of sulphur-containing amino acids. Ann Rev Biochem 52: 187–222

    Article  PubMed  CAS  Google Scholar 

  • Do KO, Herrling PL, Streit P, Turski WA, Cuenod M (1986) In vitro release and electrophysiological effects of in situ homocysteic acid, an endogenous N-methyl-D-aspartic acid agonist, in the mammalian striatum. J Neurosci 6: 2236–2244

    Google Scholar 

  • Duncan MW, Steele JC, Kopin IJ, Sanford PM (1990) 2-amino-3-(methylamino)-propanoic acid (BMAA) in cycad flour: an unlikely cause of amyotrophic lateral sclerosis and parkinsonism-dementia of Guam. Neurology 40:767–772

    PubMed  CAS  Google Scholar 

  • Eberhard DA, Holz RW 1988 Intracellular Ca2+ activates phospholipase C. Trends Neurosci 11: 517–520

    Article  PubMed  CAS  Google Scholar 

  • FAO (1970) Amino-acid content of foods and biological data on proteins. Food and Agricultural Organization of the United Nations, Rome

    Google Scholar 

  • Foster AC, Fagg GE (1984) Acidic amino acid-binding sites in mammalian neuronal membranes: their characteristics and relationships to synaptic receptors. Brain Res Rev 7: 103–164

    Article  CAS  Google Scholar 

  • Gannon RL, Terrian DM (1989) BOAA selectively enhances L-glutamate release from guinea pig hippocampal mossy fiber synaptosomes. Neurosci Lett 107: 289–294

    Article  PubMed  CAS  Google Scholar 

  • Garruto RM, Yase Y (1986) Neurodegenerative disorders of the Western Pacific: the search for mechanisms of pathogenesis. Trends Neurosci 9: 368–374

    Article  Google Scholar 

  • Griffiths OW (1987) Mammalian sulfur amino acid metabolism: an overview. In: Jakoby WB, Griffiths OW (eds) Methods in enzymology, vol 143. Academic Press, New York, pp 366–376

    Google Scholar 

  • . Hawkes CH, Cavanagh JB, Fox AJ (1989) Motoneuron disease: a disorder secondary to solvent exposure? Lancet i:73–76

    Article  Google Scholar 

  • Headley PM, Grillner S (1990) Excitatory amino acids and synaptic transmission: the evidence for a physiological function. Trends Pharmacol Sci 11: 205–211

    Article  PubMed  CAS  Google Scholar 

  • Heathfield MT, Fearn S, Steventon GB, Waring RH, Williams AC, Sturman SG (1990) Plasma cysteine and sulphate levels in patients with motor neurone, Parkinson’s and Alzheimer’s disease. Neurosci Lett 110:216-220

    Google Scholar 

  • Hugon J, Ludolph A, Roy DN, Schaumburg HH, Spencer PS (1988) Studies on the etiology and pathogenesis of motor neurone diseases. II. Clinical and electrophysiological features of pyramidal dysfunction in macaques fedLathyrus sativus and IDPN. Neurology 38:435–442

    PubMed  CAS  Google Scholar 

  • Johnson BL (1987) Prevention of neurotoxic illness in working populations. Wiley, Chichester

    Google Scholar 

  • Johnson JL, Wadman SK (1989) Molybdenum cofactor deficiency. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic basis of inherited disease. McGraw-Hill, New York

    Google Scholar 

  • Krnjevic K 1965 Actions of drugs on single neurones in the cerebral cortex. Br Med Bull 21: 10–14

    PubMed  CAS  Google Scholar 

  • Lane RJ, Bandopadhyay R, de Belleroche J (1993) Abnormal glycine metabolism in motor neurone disease: studies on plasma and cerebrospinal fluid. J R Soc Med 86(9):501–505

    Google Scholar 

  • Lund Karlson R, Grofova I, Malthe-Sorenssen D, Fonnun F (1981) Morphological changes in rat brain induced by L-cysteine injection in newborn animals. Brain Res 208: 167–180

    Article  Google Scholar 

  • MacDonald JF, Morris ME (1984) Lathyrus excitotoxin: mechanism of neuronal excitation by L-2-ox-alylamino-3-amino- and L-3-oxalylamino-2-aminopropionic acid. Exp Brain Res 57: 158–166

    Article  PubMed  CAS  Google Scholar 

  • Makowske M, Christensen HN (1982) Contrasts in transport systems for anionic amino acids in hepatocytes and a hepatoma cell line HTC. J Biol Chem 257: 5663–5670

    PubMed  CAS  Google Scholar 

  • Mani KS, Sriramachari S, Rao SLN, Sarma PS (1971) Experimental neurolathyrism in monkeys. Ind J Med Res 59: 880–885

    CAS  Google Scholar 

  • Masui Y, Mozai T, Kakehi K (1985) Functional and morphometric study of the liver in motor neurons disease. J Neurol 232: 15–19

    Article  PubMed  CAS  Google Scholar 

  • Mayer, ML, Miller RJ (1990) Excitatory amino acid receptors, second messengers and regulation of intracellular Ca2+ in mammalian neurones. Trends Pharmacol Sci 11: 254–260

    Article  PubMed  CAS  Google Scholar 

  • McGilvery RW, Goldstein G (1983) Biochemistry: a functional approach, 3rd edn. Saunders, Philadelpia, pp 578–589

    Google Scholar 

  • Meldrum B, Garthwaite J (1990) Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol Sci 11: 379–387

    Article  PubMed  CAS  Google Scholar 

  • Monaghan DT, Bridges RJ, Cotman CW (1989) The excitatory amino acid receptors: their classes, pharmacology and distinct properties in the function of the central nervous system. Ann Rev Pharmacol Toxicol 29: 365–402

    Article  CAS  Google Scholar 

  • Morselli PL, Garatini S (1970) Monosodium glutamate and the Chinese restaurant syndrome. Nature 227: 611–612

    Article  PubMed  CAS  Google Scholar 

  • Murphy TH, Schnaar RL, Coyle JT (1990) Immature cortical neurones are uniquely sensitive to glutamate toxicity by inhibition of cysteine uptake. FASEB J 4: 1624–1633

    PubMed  CAS  Google Scholar 

  • Murti VVS, Seshadri TR, Venkitsubramanian TA (1964) Neurotoxic compounds of the seeds ofLathyrus sativus. Phytochemistry 3: 73–78

    Article  CAS  Google Scholar 

  • Myers TG, Nelson SD (1990) Neuroactive carbamate adducts of p-N-methylamino-L-alanine and ethylenediamine. J Biol Chem 265: 10193–10195

    PubMed  CAS  Google Scholar 

  • Nunn PB (1989)Lathyrus sativus toxins: identification and possible mechanisms. In: Spencer PS (ed) The grass pea: threat and promise. Third World Medical Research Foundation, New York, pp 89–96

    Google Scholar 

  • Nunn PB, O’Brien P (1989) The interaction of L-methylaminoalanine with bicarbonate: 1H NMR study. FEBS Lett 251: 31–35

    Article  PubMed  CAS  Google Scholar 

  • Nunn PB, O’Brien P, Pettit LD, Pyburn SI (1989) Complexes zof zinc, copper and nickel with the nonprotein amino acid α-amino-β-methylaminopropionic acid: a naturally occurring neurotroxin. J Inorg Biochem 37: 175 - 183

    Article  PubMed  CAS  Google Scholar 

  • Nunn PB, Seelig M, Zagoren JC, Spencer PS (1987) Stereospecific acute neuronotoxicity of “uncommon” plant amino acids linked to human motor system diseases. Brain Res 410: 375–379

    Article  PubMed  CAS  Google Scholar 

  • Olney JW (1969) Monosodium glutamate. Science 165: 1028–1029

    Article  PubMed  Google Scholar 

  • Olney JW (1971) Glutamate-induced neuronal necrosis in the infant mouse hypothalamus. An electron microscopic study. J Neuropathol Exp Neurol 30: 75–90

    Article  PubMed  CAS  Google Scholar 

  • Olney JW (1978) Neurotoxicity of excitatory amino acids. In: McGeer EG, Olney JW, McGeer PL (eds), Kainic acid as a tool in neurobiology. Raven Press, New York, pp 95–121

    Google Scholar 

  • Olney JW, Ho O-L (1970) Brain damage in infant mice following oral intake of glutamate, aspartate or cysteine. Nature (Lond) 227: 609–610

    Article  CAS  Google Scholar 

  • Olney JW, Ho OL, Rhee V (1971) Cytotoxic effects of acidic and sulphur-containing amino acids in the infant mouse central nervous system. Exp Brain Res 14: 61–76

    Article  PubMed  CAS  Google Scholar 

  • Olney JW, Ho LH, Rhee V, Schainker B (1972) Cysteine-induced brain damage in infant and fetal rodents. Brain Res 45: 309–313

    Article  PubMed  CAS  Google Scholar 

  • Olney JW, Misra CH, de Gubareff T (1975) Cysteine-S-sulphate: brain damaging metabolite in sulphite oxidase deficiency. J Neuropathol Exp Neurol 34:167

    Article  PubMed  CAS  Google Scholar 

  • Olney JW, Misra CH, Rhee V (1976) Brain and retinal damage from the lathyrus excitotoxin β-N-oxalyl-L-α,β-diaminopropionic acid (ODAP). Nature 264:659–661

    Article  PubMed  CAS  Google Scholar 

  • Olney JW, Price MT, Samson L, Labruyere J (1986) The role of specific ions in glutamate neurotoxicity. Neurosci Lett 65: 65–71

    Article  PubMed  CAS  Google Scholar 

  • Olney JW, Sharpe LG, Feigin RD (1972) Glutamate-induced brain damage in infant primates. J Neuropathol Exp Neurol 31: 464–488

    Article  PubMed  CAS  Google Scholar 

  • Olney JW, Zorumski C, Price MT, Labruyere J (1990) L-cysteine, a bicarbonate-sensitive endogenous excitotoxin. Science 248: 596–599

    Article  PubMed  CAS  Google Scholar 

  • Oppenheim RW (1987) Muscle activity and motor neuron death in the spinal cord. In: Bock G, O’Connor M (eds) Selective neuronal death. Ciba Foundation Symposium 126. Wiley, Chichester, pp 96–112

    Google Scholar 

  • Pearson S, Nunn PB (1981) The neurolathyrogen, β-N-oxalyl-L-α,β-diaminopropionic acid, is a potent agonist at “glutamate preferring” receptors in frog spinal cord. Brain Res 206: 178–182

    Article  PubMed  CAS  Google Scholar 

  • Perl TM, Bedard L, Kosatsky T, Hockin JC, Todd ECD, Remis RS (1990) An outbreak of toxic encephalopathy caused by eating mussels contaminated with domoic acid. N Engl J Med 322: 1775–1780

    Article  PubMed  CAS  Google Scholar 

  • Perry TL, Hansen S, Jones K (1987) Brain glutamate deficiency in amyotrophic lateral sclerosis. Neurology 37: 1845–1848

    PubMed  CAS  Google Scholar 

  • Perry TL, Krieger C, Hansen S, Eisen A (1990) Amyotrophic lateral sclerosis: amino acid levels in plasma and cerebrospinal fluid. Ann Neurol 28: 12–17

    Article  PubMed  CAS  Google Scholar 

  • Perry TL, Krieger C, Hansen S, Tabatabaei A (1991) Amyotrophic lateral sclerosis: fasting plasma cysteine and inorganic sulfate are normal as are brain contents of cysteine. Ann Neurol 41: 487–490

    CAS  Google Scholar 

  • Peters SJ, Koh J, Choi DW (1987) Zinc selectively blocks the action of N-methyl-D-aspartate on cortical neurones. Science 236: 589–593

    Article  PubMed  CAS  Google Scholar 

  • Plaitakis A (1990) Glutamate dysfunction and selective motor neuron degeneration in amyotrophic lateral sclerosis: a hypothesis. Ann Neurol 28: 3–8

    Article  PubMed  CAS  Google Scholar 

  • Plaitakis A, Berl S, Yahr MD (1982) Abnormal glutamate metabolism in an adult-onset degenerative neurological disorder. Science 219: 193–196

    Article  Google Scholar 

  • Plaitakis A, Caroscio JT (1987) Abnormal glutamate metabolism in amyotrophic lateral sclerosis. Ann Neurol 22: 575–579

    Article  PubMed  CAS  Google Scholar 

  • Plaitakis A, Constantakakis E, Smith J (1988) The neuroexcitotoxic amino acids glutamate and aspartate are altered in the spinal cord and brain in amyotrophic lateral sclerosis. Ann Neurol 24: 446–449

    Article  PubMed  CAS  Google Scholar 

  • Polsky FI, Nunn PB, Bell EA (1972) Distribution and toxicity of α-amino-β-methylaminopropionic acid. Fed Proc 31: 1473–1475

    PubMed  CAS  Google Scholar 

  • Rao SLN, Adiga PR, Sarma PS (1964) Isolation and characterization of β-N-oxalyl-L-α,β-diaminopropionic acid: a neurotoxin from the seeds ofLathyrus sativus. Biochemistry 3: 432–436

    Article  PubMed  CAS  Google Scholar 

  • Rosenblum WI (1968) Neuropathologic changes in a case of sulphite oxidase deficiency. Neurology 18: 1187–1196

    PubMed  CAS  Google Scholar 

  • Ross SM, Seelig M, Spencer PS (1987) Specific antagonism of excitotoxic action of “uncommon” amino acids assayed in organotypic mouse cortical cultures. Brain Res 425: 120–127

    Article  PubMed  CAS  Google Scholar 

  • Ross SM, Roy DN, Spencer PS (1989) β-N-oxalylamino-L-alanine action on glutamate receptors. J Neurochem 53:710–715

    Article  PubMed  CAS  Google Scholar 

  • Rothman SM, Olney JW (1987) Excitotoxicity and the NMDA receptor. Trends Neurosci 10: 299–302

    Article  CAS  Google Scholar 

  • Rothstein JD, Tsai G, Kuncl RW (1990) Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Ann Neurol 28: 18–25

    Article  PubMed  CAS  Google Scholar 

  • Sarma PS, Padmanaban G (1969) Lathyrogens. In: Leiner IE (ed) Toxic constituents of plant foodstuffs. Academic Press, New York

    Google Scholar 

  • Schaumburg HH, Byck R, Gerstl R, Mashman JH (1969) Monosodium glutamate: its pharmacology and role in the Chinese restaurant syndrome. Science 163: 826–828

    Article  PubMed  CAS  Google Scholar 

  • Seawright AA, Brown AW, Nolan CC, Cavanagh JB (1990) Selective degeneration of cerebellar cortical neurones caused by the cycad neurotoxin, L-β-methylaminoalanine (L-BMAA), in rats. Neuropathol Appl Neurobiol 16:153–169

    Article  PubMed  CAS  Google Scholar 

  • Segal S, McNamara PD, Pepe LM (1977) Transport interaction of cystine and dibasic amino acids in renal brush border vesicles. Science 197: 169–171

    Article  PubMed  CAS  Google Scholar 

  • Shih VE, Abroms IF, Johnson JL et al. (1977) Sulphite oxidase deficiency: biochemical and clinical investigations of a hereditary metabolic disorder in sulphur metabolism. N Engl J Med 297: 1022–1028

    Article  PubMed  CAS  Google Scholar 

  • Sladeczek F, Recasesn M, Bockaert J (1988) A new mechanism for glutamate receptor action: phosphoinositide hydrolysis. Trends Neurosci 11: 545–549

    Article  PubMed  CAS  Google Scholar 

  • Slivka A, Mytilineou C, Cohen G (1987) Histochemical evaluation of glutathione in brain. Brain Res 409: 275–284

    Article  PubMed  CAS  Google Scholar 

  • Spencer PS, Roy DN, Ludolph AC, Hugon J, Dwive di MP (1986) Lathyrism: evidence for the role of the neuroexcitatory amino acid BO A A. Lancet ii: 1066–1067

    Article  Google Scholar 

  • Spencer PS, Nunn PB, Hugon J et al. (1987) Linkage of Guam amyotrophic lateral sclerosis parkinsonism-dementia to a plant excitant neurotoxin. Science 237: 517–522

    Article  PubMed  CAS  Google Scholar 

  • Stone TW, Connick JH, Winn P, Hastings MH, English M (1987) Endogenous excitotoxic agents. In: Bock G, O’Connor M (eds) Selective neuronal death. Ciba Foundation Symposium 126. Wiley, Chichester, pp 204–220

    Google Scholar 

  • Sutherland RJ, Hoesing JM, Whishaw IQ (1990) Domoic acid, an environmental toxin, produces hippocampal damage and severe memory impairment. Neurosci Lett 120: 221–223

    Article  PubMed  CAS  Google Scholar 

  • Takemoto T (1978) Isolation and structural identification of naturally occurring excitatory amino acids. In: McGeer MG et al. (eds) Kainic acid as a tool in neurobiology. Raven Press, New York, pp 1–15

    Google Scholar 

  • Usowicz MM, Gallo V, Cull-Candy SG (1989) Multiple conductance channels in type-2 cerebellar astrocytes activated by excitatory amino acids. Nature 339:380–383

    Article  PubMed  CAS  Google Scholar 

  • Teitelbaum JS, Zatorre RJ, Carpenter S, Gendron D, Evans AC, Gjedde A, Cashman NR (1990) Neurological sequelae of domoic acid intoxication due to the ingestion of contaminated mussels. N Engl J Med 322: 1781–1787

    Article  PubMed  CAS  Google Scholar 

  • Usowicz MM, Gallo V, Cull-Candy SG (1989) Multiple conductance channels in type-2 cerebellar astrocytes activated by excitatory amino acids. Nature 339: 380–383

    Article  PubMed  CAS  Google Scholar 

  • Vega A, Bell EA (1967) a-amino-P-methylaminopropionic acid, a new amino acid from seeds ofCycas circinalis. Phytochemistry 6:759–762

    Article  CAS  Google Scholar 

  • Watkins JC, Curtis DR, Biscoe TJ (1966) Central effects of β-N-oxalyl-α, β-diaminopropionic acid and otherLathyrus factors. Nature 211: 637

    Article  PubMed  CAS  Google Scholar 

  • Watkins JC, Evans RH (1981) Excitatory amino acid transmitters. Ann Rev Pharmacol Toxicol 21: 165–204

    Article  CAS  Google Scholar 

  • Watkins JC, Krogsgaard-Larsen P, Honore T (1990) Structure-activity relationships in the development of excitatory amino acid receptor agonists and competitive antagonists. Trends Pharmacol Sci 11: 25–33

    Article  PubMed  CAS  Google Scholar 

  • Watkins JC, Olverman HJ (1987) Agonists and antagonists for excitatory amino acid receptors. Trends Neurosci 10: 265–272

    Article  CAS  Google Scholar 

  • Weiss JH, Choi DW (1988)β-N-methylamino-L-alanine neurotoxicity: requirement for bicarbonate as a cofactor. Science 241:973–975

    Article  PubMed  CAS  Google Scholar 

  • Weiss JH, Christine CW, Choi DW (1989) Bicarbonate dependence of glutamate receptor activation by β-N-methylamino-L-alanine: channel recording and study with related compounds. Neuron 3: 321–326

    Article  PubMed  CAS  Google Scholar 

  • Whiting MG (1963) Toxicity of Cycads. Econ Botany 17: 271–302

    Article  CAS  Google Scholar 

  • Wright JLC, Boyd RK, De Freitas ASW et al. (1989) Identification of domoic acid, a neuroexcitatory amino acid, in toxic mussels from eastern Prince Edward Island. Can J Chem 67: 481–490

    Article  CAS  Google Scholar 

  • Yoshida T, Kikuchi G (1973) Major pathways of serine and glycine catabolism in various organs of the rat and cock. J Biochem 73: 1013–1022

    PubMed  CAS  Google Scholar 

  • Young AB (1990) What’s the excitement about excitatory amino acids in amyotrophic lateral sclerosis? Ann Neurol 28: 9–10

    Article  PubMed  CAS  Google Scholar 

  • Young AB, Fagg GE (1990) Excitatory amino acids in the brain: membrane binding and receptor autoradiographic approaches. Trends Pharmacol Sci 11: 126–133

    Article  PubMed  CAS  Google Scholar 

  • Zeevalk GD, Nicklas WJ (1989) Acute excitotoxicity in chick retina caused by the unusual amino acids BOAA and BMAA: effects of MK-801 and kynurenate. Neurosci Lett 102: 284–290

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag London Limited

About this chapter

Cite this chapter

Nunn, P.B. (1995). Toxicology of Motor Systems. In: Leigh, P.N., Swash, M. (eds) Motor Neuron Disease. Springer, London. https://doi.org/10.1007/978-1-4471-1871-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1871-8_10

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1873-2

  • Online ISBN: 978-1-4471-1871-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics