Skip to main content
Book cover

AISB91 pp 84–93Cite as

Neural Networks and Visual Behaviour: Flies; Panned Eyes; and Statistics

  • Conference paper
  • 34 Accesses

Abstract

Computer vision researchers have only comparatively recently begun to acknowledge the behavioural contexts of vision. So-called animate vision has a number of advantages over the inanimate paradigm. This paper reviews an ongoing project in animate vision using neural networks. The project has a novel context: it involves the simulation of a hoverfly, with the neural network acting as a closed-loop controller for the simulated fly. The underlying thesis of this work is that most neural network models which do not recognise the behavioural contexts of neural computation are of limited interest. This stance places the model within the domain of “computational neuroethology”, rather than “computational neuroscience”.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. H. Adelson and J. R. Bergen. Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Am. A, 2(2):284–299, February 1985.

    Article  Google Scholar 

  2. M. A. Arbib. Levels of modelling of mechanisms of visually guided behaviour. The Behavioral and Brain Sciences, 10:407–465, 1987.

    Article  Google Scholar 

  3. D. H. Ballard. Eye movements and spatial cognition. TR 218, University of Rochester Computer Science Department, November 1987.

    Google Scholar 

  4. D. H. Ballard. Reference frames for animate vision. In Proc. IJCAI, pages 1635–1641, 1989.

    Google Scholar 

  5. R. A. Brooks. A robust layered control system for a mobile robot. A.I. Memo 864, M.I.T. A.I. Lab, September 1985.

    Google Scholar 

  6. C. M. Brown. Predictive gaze control. In Proceedings of the Fifth Alvey Vision Conference, pages 103–108, 1989.

    Google Scholar 

  7. C. M. Brown, editor. The Rochester Robot. TR 257, University of Rochester Computer Science Department, August 1988.

    Google Scholar 

  8. V. Bruce and P. R. Green. Visual Perception: physiology, psychology and ecology. Lawrence Erlbaum Associates, London, 1985.

    Google Scholar 

  9. J. M. Camhi. Neuroethology: Nerve Cells and the Natural Behaviour of Animals. Sinauer Associates Inc., Sunderland, Mass., 1984.

    Google Scholar 

  10. D. T. Cliff. The computational hoverfly; a study in computational neuroethology. In J.-A. Meyer and S. W. Wilson, editors, From Animals to Animats: Proceedings of the First International Conference on the Simulation of Adaptive Behaviour, Cambridge MA, 1990. M.I.T. Press — Bradford Books.

    Google Scholar 

  11. D. T. Cliff. Computational neuroethology: A provisional manifesto. CSRP 162, University of Sussex School of Cognitive and Computing Sciences, May 1990.

    Google Scholar 

  12. D. T. Cliff. Computational neuroethology: A provisional manifesto. In J.-A. Meyer and S. W. Wilson, editors, From Animals to Animats: Proceedings of the First International Conference on the Simulation of Adaptive Behaviour, Cambridge MA, 1990. M.I.T. Press — Bradford Books.

    Google Scholar 

  13. D. T. Cliff. Network control for animate vision with nonuniform sampling. CSRP 163, University of Sussex School of Cognitive and Computing Sciences, 1990. Forthcoming.

    Google Scholar 

  14. T. S. Collett. Some operating rules for the optomotor system of a hoverfly during voluntary flight. Journal of Comparative Physiology A, 138:271–282, 1980.

    Article  Google Scholar 

  15. T. S. Collett and A. J. King. Vision during flight. In G. A. Horridge, editor, The compound eye and vision of insects, pages 437–466. Clarendon, Oxford, 1975.

    Google Scholar 

  16. T. S. Collett and M. F. Land. Visual control of flight behaviour in the hoverfly, Syritta pipiens L. Journal of Comparative Physiology, 99:1–66, 1975.

    Google Scholar 

  17. F. Crick. The recent excitement about neural networks. Nature, 337:129–132, January 1989.

    Article  Google Scholar 

  18. S. Harnad. The symbol grounding problem. In CNLS Conference on Emergent Computation, Los Alamos, May 1989. Submitted to Physica D.

    Google Scholar 

  19. D. Hearn and P. M. Baker. Computer Graphics. Prentice Hall International, Englewood Cliffs NJ, 1986.

    Google Scholar 

  20. G. E. Hinton and S. Becker. An unsupervised learning procedure that discovers surfaces in random-dot stereograms. In International Joint Conference on Neural Networks, Washington DC, January 1990.

    Google Scholar 

  21. G. Hoyle. The scope of neuroethology. The Behavioral and Brain Sciences, 7:367–412, 1984.

    Article  Google Scholar 

  22. M. F. Land. Similarities in the visual behaviour of arthropods and men. In M. S. Gazzaniga and C. Blakemore, editors, Handbook of Psychobiology, pages 49–72. Academic Press, New York, 1975.

    Google Scholar 

  23. R. Linsker. Designing a sensory processing system: What can be learned from principle component analysis? Research Report RC 14983, I.B.M. T. J. Watson Research Centre, Yorktown Heights, NY, September 1989.

    Google Scholar 

  24. R. Linsker. How to generate ordered maps by maximising the mutual information between input and output signals. Research Report RC 14624, I.B.M. T. J. Watson Research Centre, Yorktown Heights, NY, May 1989.

    Google Scholar 

  25. M. R. Lynch and P. J. Rayner. The properties and implementation of the nonlinear vector space connectionist model. In First IEE International Conference on Artificial Neural Networks, pages 186–190, London, October 1989. IEE.

    Google Scholar 

  26. D. Marr. Vision. W. H. Freeman, New York, 1982.

    Google Scholar 

  27. G. Mather, B. Moulden, and A. O’Halloran. Polarity specific adaptation to motion: evidence for gradient detectors, 1990. preprint.

    Google Scholar 

  28. J.-A. Meyer and S. W. Wilson, editors. From Animals to Animais: Proceedings of the First International Conference on the Simulation of Adaptive Behaviour. M.I.T. Press — Bradford Books, Cambridge MA, 1990.

    Google Scholar 

  29. D. Parisi, F. Cecconi, and S. Nolfi. Econets: Neural networks that learn in an environment. Network, 1:149–168, 1990.

    Article  Google Scholar 

  30. M. G. Paulin, M. E. Nelson, and J. M. Bower. Dynamics of compensatory eye movement control: An optimal estimation analysis of the vestibulo-ocular reflex. International Journal of Neural Systems, 1(1):23–29, 1989.

    Article  Google Scholar 

  31. T. Poggio and F. Girosi. A theory of networks for approximation and learning. A.I. Memo 1140, M.I.T. A.I. Lab, July 1989.

    Google Scholar 

  32. D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error propagation. In D. E. Rumelhart and J. L. McClelland, editors, Parallel Distributed Processing, Volume 1: Foundations, pages 318–362. M.I.T. Press — Bradford Books, Cambridge MA, 1986.

    Google Scholar 

  33. T. J. Sejnowski, C. Koch, and P. S. Churchland. Computational neuroscience. Science, 241:1299–1306, September 1988.

    Article  Google Scholar 

  34. M. V. Srinivasan, S. B. Laughlin, and A. Dubs. Predictive coding: a fresh view of inhibition in the retina. Proc. R. Soc. Lond. B, 216:427–459, 1982.

    Article  Google Scholar 

  35. J. P. H. van Santen and G. Sperling. Elaborated Reichardt detectors. Journal of the Optical Society of America A, 2(2):300–320, February 1985.

    Article  Google Scholar 

  36. A. B. Watson. Detection and recognition of simple spatial forms. In O. J. Braddick and A. C. Sleigh, editors, Physical and Biological Processing of Images, pages 100–114. Springer-Verlag, Berlin, 1983.

    Chapter  Google Scholar 

  37. H. White. Learning in artificial networks: A statistical perspective. Neural Computation, 1:415–424, 1989.

    Article  Google Scholar 

  38. S. W. Wilson. Adaptive “cortical” pattern recognition. In Proceedings of the International Conference on Genetic Algorithms and Their Application, Pittsburg, PA, July 1985.

    Google Scholar 

  39. D. S. Young. Logarithmic sampling of images for computer vision. In A. G. Cohn, editor, Proceedings of the Seventh conference of the Society for the Study of Artificial Intelligence and Simulation of Behaviour, pages 145–150, London, April 1989. Pitman/Morgan Kaufmann.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag London Limited

About this paper

Cite this paper

Cliff, D. (1991). Neural Networks and Visual Behaviour: Flies; Panned Eyes; and Statistics. In: Steels, L., Smith, B. (eds) AISB91. Springer, London. https://doi.org/10.1007/978-1-4471-1852-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1852-7_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-3-540-19671-6

  • Online ISBN: 978-1-4471-1852-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics