Thirst pp 131-146 | Cite as

Mineral Appetite: An Overview

  • D. Denton
Part of the ILSI Human Nutrition Reviews book series (ILSI HUMAN)


It is now firmly established that large areas of the mountains and the interior of continents, have very low sodium concentrations in soil and plants, and sodium deficiency of animals does occur (Blair-West et al. 1968; Denton 1982). In the absence of geological sources, rain water is the source of sodium, and the sodium content declines with distance from sea coast and the marine aerosols. Similarly there are large areas of continents such as the veldt of Africa, southern Texas, and areas of Australia where phosphorus content of vegetation is very low, and physiological function in animals may be grossly impaired. As a result of a variety of circumstances, particularly attendant on lactation, calcium deficiency may develop and, similarly, magnesium deficiency may occur acutely. Given the high potassium content of cellular material, whether plant or animal in origin, the occurrence of potassium deficit in nature is probably unusual except perhaps as a result of bacterial infection of the gut, most likely in gregarious species, where copious diarrhoea and disturbance of extracellular chemistry can cause serious depletion of intracellular potassium, a phenomenon first fully documented in man in the US.


Sodium Concentration Sodium Intake Wild Rabbit Sodium Depletion Subfornical Organ 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham SF, Denton DA, McKinley MJ, Weisinger RS (1976) Effect of an angiotensin antagonist rat 1-ala 8-angiotensin II on physiological thirst. Pharmacol Biochem Behav 4:243PubMedCrossRefGoogle Scholar
  2. Andersson B (1978) Regulation of water intake. Physiol Rev 58:502–603Google Scholar
  3. Avrith DB and Fitzsimons JT (1980) Increased sodium appetite in the rat induced by intracranial administration of components of the renin-angiotensin system. J Physiol (Lond) 310:349–364Google Scholar
  4. Bare JK (1949) The specific hunger for sodium chloride in normal adrenalectomized white rats. J Comp Physiol Psychol 42:242PubMedCrossRefGoogle Scholar
  5. Barnwell GM, Dollahite J, Mitchell DS (1985) Salt taste preference in baboons. Physiol Behav 37:279–284CrossRefGoogle Scholar
  6. Blair-West JR, Coghlan JP, Denton DA et al. (1968) Physiological, morphological and behavioural adaptation to a sodium deficient environment by wild native Australian and introduced species of animals. Nature 217:922–925PubMedCrossRefGoogle Scholar
  7. Blair-West JR, Denton DA, Gellately DR, McKinley MJ, Nelson JF, Weisinger RS (1987) Changes in sodium appetite in cattle induced by changes in CSF sodium concentration and osmolality. Physiol Behav 39:465–469PubMedCrossRefGoogle Scholar
  8. Blair-West JR, Denton DA, McKinley MJ, Weisinger RS (1988) Angiotensin — related sodium appetite and thirst in cattle. Am J Physiol 255:R205–R211PubMedGoogle Scholar
  9. Brondsted H (1970) Cerebrospinal fluid glucose and phlorizin. Acta Neurol Scand 46:637–641PubMedCrossRefGoogle Scholar
  10. Bryant RW, Epstein AN, Fitzsimons JT, Fluharty SJ (1980) Arousal of specific and persistent sodium appetite in the rat with continuous intracerebroventricular infusion of angiotensin II. J Physiol (Lond) 301:365–382Google Scholar
  11. Buggy J, Jonklaas J (1984) Sodium appetite decreased by central angiotensin blockade. Physiol Behav 32:737–742PubMedCrossRefGoogle Scholar
  12. Campbell DJ, Bouhnik J, Menard J, Corvol P (1984) Identity of angiotensinogen precursors of rat brain and liver. Nature 308:206–208PubMedCrossRefGoogle Scholar
  13. Chiaraviglio E, Lozada C (1986) Effect of intracerebroventricular vanadate administration on salt and water intake and excretion in the rat. Pharmacol Biochem Behav 24:1503–1508PubMedCrossRefGoogle Scholar
  14. de Caro G (1986) Effects of peptides of the “gut-brain-skin triangle” on drinking behaviour of rats and birds. In: de Caro G, Epstein AN, Massi M (eds) The physiology of thirst and sodium appetite. Plenum Press, New York, London, p 213Google Scholar
  15. Denton DA (1966) Some theoretical considerations in relation to innate appetite for salt. Conditional Reflex 1:144Google Scholar
  16. Denton DA (1982) The hunger for salt. Springer-Verlag, Berlin, HeidelbergGoogle Scholar
  17. Denton DA, Nelson JF (1971) Effect of pregnancy and lactation on the mineral appetites of wild rabbits (Oryctolagus cuniculus L). Endocrinology 88:31PubMedCrossRefGoogle Scholar
  18. Denton DA, Nelson JF (1978) The control of salt appetite in wild rabbits during lactation. Endocrinology 103:1880PubMedCrossRefGoogle Scholar
  19. Denton DA, Sabine JR (1961) The selective appetite for sodium shown by sodium deficient sheep. J Physiol (Lond) 157:97Google Scholar
  20. Denton DA, Kraintz F, Kraintz L (1969) The inhibition of salt appetite of sodium deficient sheep by intracarotid infusion of oubain. Commun Behav Biol 4:183–186Google Scholar
  21. Denton DA, McKinley MJ, Nelson JF et al. (1984) Species differences in the effect of decreased CSF sodium concentration on salt appetite. J Physiol (Paris) 79:499–504Google Scholar
  22. Denton DA, Nelson JF, Tarjan E (1985) Water and salt intake of wild rabbits (Oryctolagus cuniculus) following dipsogenic stimuli. J Physiol (Lond) 362:285–301Google Scholar
  23. Denton DA, McBurnie M, Ong F, Osborne P, Tarjan E (1988) Sodium deficiency and other physiological influences on voluntary sodium intake of BALB/c mice. Am J Physiol 255:R1025–R1034PubMedGoogle Scholar
  24. Deschepper GF, Bouhnik J, Ganong WF (1986) Co-localization of angiotensinogen and glial fibrillary acidic protein in astrocytes in rat brain. Brain Res 374:195–198PubMedCrossRefGoogle Scholar
  25. Epstein AN (1986) Hormonal synergy as the cause of salt appetite. In: de Caro G, Epstein AN, Massi M (eds) The physiology of thirst and sodium appetite. Plenum Press, New York, p 395Google Scholar
  26. Epstein AN, Massi M (1987) Salt appetite in the pigeon in response to pharmacological treatments. J Physiol (Lond) 393:555–568Google Scholar
  27. Epstein AN, Stellar E (1955) The control of salt preference in the adrenalectomized rat. J Comp Physiol Psychol 48:167PubMedCrossRefGoogle Scholar
  28. Epstein A, Zhang AD, Schultz J, Rosenberg M, Kupsha T, Stellar E (1984) The failure of ventricular sodium to control sodium appetite in the rat. Physiol Behav 32:683–686PubMedCrossRefGoogle Scholar
  29. Felix D, Gambino MC, Yong Y, Schelling P (1986) Angiotensin sensitive sites in the central nervous system. In: de Caro G, Epstein AN, Massi M (eds) The physiology of thirst and sodium appetite. Plenum Press, London, p135Google Scholar
  30. Fitts DA, Thunhorst RL, Simpson JB (1985) Diuresis and reduction of salt appetite by lateral ventricular infusion of etriopeptin II. Brain Res 348:118–124PubMedCrossRefGoogle Scholar
  31. Fitzsimons JT (1986) Endogenous angiotensin and sodium appetite. In: de Caro G, Epstein AN, Massi M (eds) The physiology of thirst and sodium appetite. Plenum Press, New York, p 383Google Scholar
  32. Fuxe K, Ganten D, Hockfelt, Bomme P (1976) Immunohystochemical evidence for the existence of angiotensin II containing nerve terminals in the brain and spinal cord of the rat. Neurosci Lett 2:229–234PubMedCrossRefGoogle Scholar
  33. Ganten D, Hermann K, Bayer C, Unger TH, Lang RE (1983) Angiotensin synthesis in the brain and increased turnover in hypertensive rats. Science 221:869–871PubMedCrossRefGoogle Scholar
  34. Gardiner TW, Jolley JR, Vagnucci AH, Stricker EM (1986) Enhanced sodium appetite in rats with lesions centered on the nucleus medianus. Behav Neurosci 100:531–535PubMedCrossRefGoogle Scholar
  35. Glick Z, Mayer J (1968) Hyperphagia caused by cerebral ventricular infusion of phlorizin. Nature 219:1374PubMedCrossRefGoogle Scholar
  36. Goodall J, van Lawick (1971) In the shadow of man. Collins, LondonGoogle Scholar
  37. Handal PJ (1965) Immediate acceptance of sodium salts by sodium deficient rats. Psychonomic Sci 3:315Google Scholar
  38. Hofmann FG, Knobil E, Greep RO (1954) Effects of saline on the adrenalectomized monkey. Am J Physiol 178:361–366PubMedGoogle Scholar
  39. Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318PubMedCrossRefGoogle Scholar
  40. Jordan PA, Botkin DB, Dominiski AS, Lowendorf HS, Belovsky GE (1973) Sodium as a critical nutrient for the moose of Isle Royale. In: Proceedings of the North American Moose Conference Workshop 9:13Google Scholar
  41. Kriekhaus EE, Wolf G (1968) Acquisition of sodium by rats; interaction of innate mechanisms and latent learning. J Comp Physiol Psychol 65:197CrossRefGoogle Scholar
  42. Lind RW, Swanson LN, Bruhn TO, Ganten D (1985) The distribution of AII immunoreactive cells and fibres in the paraventriculo-hypophysial system of the rat. Brain Res 338:81–89PubMedCrossRefGoogle Scholar
  43. Lynch KR, Hawelu-Johnson CL, Guyenemt PG (1987) Localization of brain angiotensinogen mRNA by hybridization histochemistry. Brain Res 388:149–158PubMedCrossRefGoogle Scholar
  44. McBurnie M, Denton DA, Tarjan E (1988) Influence of pregnancy and lactation on sodium appetite of Balb/c mice. Am J Physiol 255:R1020–R1024PubMedGoogle Scholar
  45. McEwen BS, Lambdin LT, Rainbow TC, De Nicola AF (1986) Aldosterone effects on salt appetite in adrenalectomized rats. Neuroendocrinology 43:38–43PubMedCrossRefGoogle Scholar
  46. McKinley MJ, Denton DA, Leventer M et al. (1986) Adipsia in sheep caused by cerebral lesions. In: de Caro G, Epstein AN, Massi M (eds) The physiology of thirst and sodium appetite. Plenum Press, New York, London, p 213Google Scholar
  47. Mendelsohn FAO, Allen AM, Clevers J, Denton DA, Tarjan E, McKinley MJ (1988) Localization of angiotensin II receptor binding in rabbit brain by in vitro autoradiography. J Comp Neurol 270:372–384PubMedCrossRefGoogle Scholar
  48. Nitabach MN, Shulkin J, Epstein AN (1989) The medial amygdala is part of a mineralocorticoid sensitive circuit controlling NaCl intake in the rat. Behav Brain Res 35:127–134PubMedCrossRefGoogle Scholar
  49. Olsson K (1973) Further evidence for the importance of CSF sodium concentration in central control of fluid balance. Acta Physiol Scand 88:183–188PubMedCrossRefGoogle Scholar
  50. Osborne PG, Denton DA, Weisinger RS (1987) Effect of variation of the composition of CSF in the rat upon drinking of water and hypertonic NaCl solution. Behav Neurosci 101:371–377PubMedCrossRefGoogle Scholar
  51. Osborne PG, Denton DA, McBurnie M, Tarjan E, Weisinger RS (in press) Decreased intracerebral sodium concentration and sodium appetite in Balb/c mice. Am J PhysiolGoogle Scholar
  52. Park R, Denton DA, McKinley MJ, Penington G, Weisinger RS (1989) Intracerebroventricular saccharide infusions inhibit thirst induced by systemic hypertonicity. Brain Research 493:123–128PubMedCrossRefGoogle Scholar
  53. Richter CP (1956) Salt appetite of mammals. Its dependence on instinct and metabolism. In: L’Instinct dans le comportment des animaux et de l’homme. Masson et cie, Paris, p 577Google Scholar
  54. Richter CP, Eckert JF (1937) Increased calcium appetite of parathyroidectomized rats. Endocrinology 21:50–54CrossRefGoogle Scholar
  55. Richter CP, Helfrick S (1943) Decreased phosphorus appetite of parathyroidectomized rats. Endocrinology 33:349–352CrossRefGoogle Scholar
  56. Rodgers WL (1967) Specificity of specific hungers. J Comp Physiol Psychol 64:49–58PubMedCrossRefGoogle Scholar
  57. Rowland NE and Fregly MJ (1988) Sodium appetite; species and strain differences and role of reninangiotensin-aldosterone system. Appetite 11:143–178PubMedCrossRefGoogle Scholar
  58. Sakai RR, Nicolaïdis S, Epstein AN (1986) Salt appetite is suppressed by interference with angiotensin II and aldosterone. Am J Physiol 251:R762–R768PubMedGoogle Scholar
  59. Sakai RR, Fine WB, Epstein AN, Frankmann SP (1987) Salt appetite is enhanced by one prior episode of sodium depletion in the rat. Behav Neurosci 101:724–731PubMedCrossRefGoogle Scholar
  60. Schelling P, Ganten U, Sponer G, Ungar T, Ganten D (1980) Components of the renin angiotensin system in the cerebrospinal fluid of rats and dogs with special consideration of the origin and the fate of angiotensin II. Neuroendocrinology 31:297–308PubMedCrossRefGoogle Scholar
  61. Schulkin J, Eng R, Miselis RR (1983) The effects of disconnection of the subfornical organ on behavioral and physiological responses to alterations of body sodium. Brain Research 263:351–355PubMedCrossRefGoogle Scholar
  62. Schulkin J, Leibman D, Ehrman RN, Norton NW, Ternes JW (1984) Salt hunger in the rhesus monkey. Behav Neurosci 98:753–756PubMedCrossRefGoogle Scholar
  63. Shaller GB (1963) The mountain gorilla — ecology and behaviour. University of Chicago Press, ChicagoGoogle Scholar
  64. Stirling C (1967) High resolution radioautography of phlorizin-3H in rings of hamster intestine. J Cell Biol 35:605–618PubMedCrossRefGoogle Scholar
  65. Stricker EM and Verbalis JG (1987) Central inhibitory control of sodium appetite in rats: correlation with pituitary oxytocin secretion. Behav Neurosci 101:560–567PubMedCrossRefGoogle Scholar
  66. Sutcliffe AJ (1977) Further notes on bones and antlers chewed by deer and other ungulates. Deer 4:73–80Google Scholar
  67. Tarjan E, Denton DA (in press) Sodium/water intake of rabbits following administration of hormones of stress. Brain Res BullGoogle Scholar
  68. Tarjan E, Cox P, Denton DA, McKinley MJ, Weisinger RS (1986) The effect of local change of CSF sodium concentration in the anterior third ventricle on salt appetite. In: de Caro G, Epstein AN, Massi M (eds) The physiology of thirst and sodium appetite, Plenum Press, New York, London, pp 473–478Google Scholar
  69. Tarjan E, Denton DA, McBurnie MI, Weisinger RS (1988a) Water and sodium intake of wild and New Zealand rabbits following angiotensin. Peptides 9:677–679PubMedCrossRefGoogle Scholar
  70. Tarjan E, Denton DA, Weisinger RS (1988b) Atrial natriuretic peptide inhibits water and sodium intake in rabbits. Regul Pept 23:63–75PubMedCrossRefGoogle Scholar
  71. Tarjan E, Blair-West JR, de Caro G et al. (1990) Sodium and water intake of sheep, rabbits and cattle during icv infusion of eledoisin. Pharmacol Biochem Behav 35:823–828PubMedCrossRefGoogle Scholar
  72. Theiler A, Green HH, du Toit TJ (1924) Phosphorus in the livestock industry. S Afr Dept Agric J 8:460Google Scholar
  73. Thorn GW, Dorrance SS, Day E (1942) Addisons disease; evaluation of synthetic deoxycorticosterone acetate therapy in 158 patients. Ann Intern Med 16:1053Google Scholar
  74. Unger T, Ganten D, Ludwig G, Lang RE (1986) The brain renin angiotensin system: update. In: de Caro G, Epstein AN, Massi M (eds) The physiology of thirst and sodium appetite, Plenum Press, New York, London, p 123Google Scholar
  75. Weisinger RS, Considine P, Denton DA et al. (1982) Role of sodium concentration of the cerebrospinal fluid in the salt appetite of sheep. Am J Physiol 242:R51PubMedGoogle Scholar
  76. Weisinger RS, Denton DA, McKinley MJ, Muller AF, Tarjan E (1985) Cerebrospinal fluid sodium concentration and salt appetite. Brain Res 326:95–105PubMedCrossRefGoogle Scholar
  77. Weisinger RS, Denton DA, McKinley MJ, Muller AF, Tarjan E (1986a) Angiotensin and sodium appetite of sheep. Am J Physiol 251:R690–R699PubMedGoogle Scholar
  78. Weisinger RS, Denton DA, McKinley MJ, Simpson JB, Tarjan E (1986b) Cerebral sodium sensors and sodium appetite in sheep. In: de Caro G, Epstein AN, Massi M (eds) The physiology of thirst and sodium appetite. Plenum Press, New York, London, pp 485–490Google Scholar
  79. Weisinger RS, Denton DA, McKinley MJ, Osborne PG, Tarjan E (1987a) Decrease of brain extracellular fluid [Na] and its interaction with other factors influencing sodium appetite in sheep. Brain Res 420:135–143PubMedCrossRefGoogle Scholar
  80. Weisinger RS, Denton DA, de Nicolantonio R, McKinley MJ, Muller AE, Tarjan E (1987b) Role of angiotensin in sodium appetite of sodium deplete sheep. Am J Physiol 253:R482–R488PubMedGoogle Scholar
  81. Weisinger RS, Denton DA, de Nicolantonio R, Hards DK, McKinley MJ, Oldfield BJ, Osborne PG (in press) Subfornical organ lesion decreases sodium appetite in the sodium-depleted rat. Brain ResGoogle Scholar
  82. Weiss ML, Moe KE, Epstein AN (1986) Interference with central actions of angiotensin II suppresses sodium appetite. Am J Physiol 250:R250–R259PubMedGoogle Scholar
  83. Wolf G (1969) Innate mechanism for regulation of sodium intake. In: Pfaffmann C (ed) Proceedings of the third international symposium on olfaction and taste. Rockefeller University Press, New York, pp 548–553Google Scholar

Copyright information

© Springer-Verlag London Limited 1991

Authors and Affiliations

  • D. Denton

There are no affiliations available

Personalised recommendations