Skip to main content

Molecular Mimicry in Autoimmune Disease

  • Chapter
  • 44 Accesses

Part of the book series: Argenteuil Symposia ((ARGENTEUIL))

Abstract

The basis for a functional immune system is the ability to discriminate between self and non-self. To this end the immune system features a set of unique recognition molecules, the major histocompatibility complex (MHC) molecules of antigen presenting cells, the immunoglobulins of B lymphocytes and the T cell receptors of T lymphocytes. Within this system, a nearly unlimited number of foreign antigens can be recognized, even structures to which the organism has not previously been exposed, yet the organism’s own molecules are not recognized. The selective lack of recognition of self antigens is believed to evolve during the maturation of T cells in the thymus [1].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schwartz RH (1989) Acquisition of immunologic self-tolerance. Cell 57: 1073–1081

    Article  PubMed  CAS  Google Scholar 

  2. Lindstrom JD, Shelton D, Fujii Y (1988) Myasthenia gravis. Adv Immunol 42: 233–283

    Article  PubMed  CAS  Google Scholar 

  3. Oldstone MBA (1984) Virus-induced immune complex formation and disease: Definition, regulation, importance. In: Notkins AL, Oldstone MBA (eds) Concepts in viral pathogenesis, Springer, Heidelberg, pp 201–209

    Chapter  Google Scholar 

  4. Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC (1987) The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature 329: 512–518

    Article  PubMed  CAS  Google Scholar 

  5. Davis MM, Bjorkman PJ (1988) T-cell antigen receptor genes and T-cell recognition. Nature 334: 395–402

    Article  PubMed  CAS  Google Scholar 

  6. Svejgaard A, Platz P, Ryder LP (1983) HLA and disease 1982: a survey. Immunol Rev 70: 193–218

    Article  PubMed  CAS  Google Scholar 

  7. Michelsen B, Dyrberg T, Vissing H, Serup P, Lernmark Å (1990) HLA-DQ and -DX genes in insulin-dependent diabetes. Curr Top Microbiol Immunol (in press)

    Google Scholar 

  8. Olmos P, A’Hern R, Heaton DA, Millward BA, Risley D, Pyke DA, Leslie RDG (1988) The significance of the concordance rate for Type 1 (insulin-dependent) diabetes in identical twins. Diabetologia 31: 747–750

    Article  PubMed  CAS  Google Scholar 

  9. Notkins AL, Onodera T, Prabhakar B (1984) Virus-induced autoimmunity. In: Notkins AL, Oldstone MBA (eds) Concepts in viral pathogenesis, Springer, Heidelberg, pp 210–215

    Chapter  Google Scholar 

  10. Damian RT (1964) Molecular mimicry: antigen sharing by parasite and host and its consequences. Am Nat 98: 129–149

    Article  Google Scholar 

  11. Baekkeskov S, Landin M, Kristensen JK, Srikanta S, Bruining GJ, Mandrup-Poulsen T, de Beaufort C, Soeldner JS, Eisenbarth G, Lindgren F, Sundquist G, Lernmark Å (1987) Antibodies to a 64,000 Mr human islet cell antigen precede the clinical onset of insulin-dependent diabetes. J Clin Invest 79: 926–934

    Article  PubMed  CAS  Google Scholar 

  12. Dyrberg T, Petersen JS, Oldstone MBA (1990) Immunological cross-reactivity between mimicking epitopes on a virus protein and a human autoantigen depends on a single amino acid residue. Clin Immunol Immunopathol 54: 290–297

    Article  PubMed  CAS  Google Scholar 

  13. Dyrberg T, Oldstone MBA (1986) Peptides as probes to study molecular mimicry and virus- induced autoimmunity. Curr Topic Microbiol Immunol 130: 25–37

    Article  CAS  Google Scholar 

  14. Lane DP, Hoeffler WK (1980) SV 40 large T shares an antigenic determinant with a cellular protein of molecular weight 68,000. Nature 288: 167–170

    Article  PubMed  CAS  Google Scholar 

  15. Dales S, Fujinami RS, Oldstone MBA (1983) Infection with vaccinia favors the selection of hybridomas synthesizing autoantibodies against intermediate filaments, one of them cross- reacting with the virus hemagglutinin. J Immunol 131: 1546–1553

    PubMed  CAS  Google Scholar 

  16. Fujinami RS, Oldstone MBA, Wroblewska Z, Frankel ME, Koprowski H (1983) Molecular mimicry in virus infection: cross-reaction of measles virus phosphoprotein or of herpes simplex protein with human intermediate filaments. Proc Natl Acad Sci USA 80: 2346–2350

    Article  PubMed  CAS  Google Scholar 

  17. Tardieu M, Powers ML, Hafler DA, Hauser SL, Weiner HL (1984) Autoimmunity following viral infection: demonstration of monoclonal antibodies against normal tissue following infection of mice with reovirus and demonstration of shared antigenicity between virus and lymphocytes. Eur J Immunol 14: 561–565

    Article  PubMed  CAS  Google Scholar 

  18. Srinivasappa J, Saegusa J, Prabhakar BS, Gentry MK, Buchmeier MJ, Wiktor TJ, Koprowski H, Oldstone MBA, Notkins AL (1986) Molecular mimicry: frequency of reactivity of monoclonal antiviral antibodies with normal tissues. J Virol 57: 397–401

    PubMed  CAS  Google Scholar 

  19. Oldstone MBA (1989) Molecular mimicry as a mechanism for the cause and as a probe uncovering etiologic agent(s) of autoimmune disease. Curr Top Microbiol Immunol 145: 127–135

    PubMed  CAS  Google Scholar 

  20. Fujinami RS, Oldstone MBA (1985) Amino acid homology and immune responses between the encephalitogenic site of myelin basic protein and virus: a mechanism for autoimmunity. Science 230: 1043–1045

    Article  PubMed  CAS  Google Scholar 

  21. Jahnke U, Fischer EH, Alvord EC (1985) Sequence homology between certain viral proteins and proteins related to encephalomyelitis and neuritis. Science 229: 282–284

    Article  PubMed  CAS  Google Scholar 

  22. Shaw S-Y, Laursen RA, Lees MB (1986) Analogous amino acid sequences in myelin proteolipid and viral proteins. FEBS 207: 266–270

    Article  CAS  Google Scholar 

  23. Lipton H, Miller S, Melvold R, Fujinami RS (1986) Theiler’s murine encephalomyelitis virus (TMEV) infection in mice as a model for multiple sclerosis. In: Notkins AL, Oldstone MBA (eds) Concepts in viral pathogenesis II. Springer-Verlag, Heidelberg, pp 248–254

    Google Scholar 

  24. Fujinami RS, Zurbriggen A, Powell HC (1988) Monoclonal antibody defines determinant between Theiler’s virus and galactocerebroside. J Neuroimmunol 20: 25–32

    Article  PubMed  CAS  Google Scholar 

  25. Fujinami RS (1989) Immune responses against myelin basic protein and/or galactocerebroside cross-react with viruses: Implications for demyelinating disease. Curr Top Microbiol Immunol 145: 91–100

    Google Scholar 

  26. van Eden W, Hogervorst EJM, Hensen EJ, van der Zee R, van Embden JDA, Cohen IR (1989) A cartilage-mimicking T-cell epitope on a 65k mycobacterial heat-shock protein: adjuvant arthritis as a model for human rheumatoid arthritis. Curr Top Microbiol Immunol 145: 27–43

    PubMed  Google Scholar 

  27. Holoshitz J, Naparstek Y, Ben-Nun A, Cohen IR (1983) Lines of T lymphocytes induce or vaccinate against autoimmune arthritis. Science 219: 56–58

    Article  PubMed  CAS  Google Scholar 

  28. van Eden W, Holoshitz J, Nevo Z, Frenkel A, Klajman A, Cohen IR (1985) Arthritis induced by a lymphocyte clone that responds to Mycobacterium tuberculosis and to cartilage proteoglycans. Proc Nat Acad Sci USA 82: 5064–5067

    Article  Google Scholar 

  29. van der Zee R, van Eden W, Meloen RH, Noordzÿ A, van Embden JDA (1989) Efficient mapping and characterization of a T cell epitope by the simultaneous synthesis of multiple peptides. Eur J Immunol 19: 43–47

    Article  PubMed  Google Scholar 

  30. Zabriskie JB (1985) Rheumatic fever: the interplay between host genetics and microbe. Circulation 71: 1077–1086

    Article  PubMed  CAS  Google Scholar 

  31. Zabriskie JB, Hsu KC, Seegal BC (1970) Heart reactive antibody associated with rheumatic fever: characterization and diagnostic significance. Clin Exp Immunol 7: 149–159

    Google Scholar 

  32. Zabriskie JB, Freiner EH (1966) An immunological relationship between the group A streptococcus and mammalian muscle. J Exp Med 124: 661–678

    Article  PubMed  CAS  Google Scholar 

  33. Dale JB, Beachey EH (1985) Epitopes of streptococcal M proteins shared with cardiac myosin. J Exp Med 162: 583–591

    Article  PubMed  CAS  Google Scholar 

  34. Krisher K, Cunningham MW (1985) Myosin: a link between streptococci and heart. Science 227: 413–415

    Article  PubMed  CAS  Google Scholar 

  35. Sargent SJ, Beachey E, Corbett CE, Dale JB (1987) Sequence of protective epitopes of streptococcal M proteins shared with cardiac sarcolemmal membranes. J Immunol 139, 1285–1290

    PubMed  CAS  Google Scholar 

  36. Dale JB, Beachey EH (1987) Human cytotoxic T-lymphocytes evoked by group A streptococcal M proteins. J Exp Med 166: 1825–1835

    Article  PubMed  CAS  Google Scholar 

  37. Froude J, Gibofsky A, Buskirk DR, Khanna A, Zabriskie JB (1989) Cross-reactivity between streptococcus and human tissue: A model of molecular mimicry and autoimmunity. Curr Top Microbiol Immunol 145: 5–26

    PubMed  CAS  Google Scholar 

  38. Takle GB, Hudson L (1989) Autoimmunity and Chagas’ disease. Curr Top Microbiol Immunol 145: 79–92

    PubMed  CAS  Google Scholar 

  39. Cossio PM, Diez C, Szarfman A, Kreutzner E, Candiolo B, Arana RM (1974) Chagasic cardiomyopathy: demonstration of a serum gamma globulin factor which reacts with endocardium and vascular structures. Circulation 49: 13–25

    PubMed  CAS  Google Scholar 

  40. Khoury EL, Ritacco V, Cossio PM, Laguens RP, Szarfman A, Diez C, Arana RM (1979) Circulating antibodies to peripheral nerve in American trypanosomiasis ( Chagas’ disease ). Clin Exp Immunol 36: 8–15

    PubMed  CAS  Google Scholar 

  41. Szarfman A, Luguettia A, Rossi A, Rezende JM, Schmunis GA (1981) Tissue reacting immunoglobulins in patients with different clinical forms of Chagas’ disease. Am J Trop Med Hyg 30: 43

    PubMed  CAS  Google Scholar 

  42. Cossio PM, Laguens RP, Kreutzer E, Diez C, Segal A, Arana RM (1974) Chagasic cardiopathy: antibodies reacting with plasma membrane of striated muscle and endothelial cells. Circulation 50: 1252–1263

    PubMed  CAS  Google Scholar 

  43. Ribiero dos Santos R, Marquez JO, Von Gal Furtado CC, Ramos de Olieveira JC, Martins AR, Koberle F (1979) Antibodies against neurons in chronic Chagas’ disease. Tropenmed Parasitol 30: 19–23

    Google Scholar 

  44. Wood JN, Hudson L, Jessell TM, Yamamoto M (1982) A monoclonal antibody defining determinants on subpopulations of mammalian neurons and Trypanosoma cruzi parasites. Nature 296: 34–38

    Article  PubMed  CAS  Google Scholar 

  45. Towbin H, Rosenfielder G, Wieslander J, Avila JL, Rojas M, Szarfman A, Esser K, Nowack H, Timpl R (1987) Circulating antibodies to mouse laminin in Chagas’ disease. American cutaneous leishmaniasis and normal individuals recognize terminal galactosyl α(l-3)-galactose epitopes. J Exp Med 166: 419–432

    Article  PubMed  CAS  Google Scholar 

  46. Ribiero dos Santos R, Hudson L (1980) Immunological consequences of parasite modification of host cells. Clin Exp Immunol 40: 36–41

    Google Scholar 

  47. Kagnoff MF (1990) Celiac disease: pathogenesis and clinical features. In: Thomson ABR, Shaffer EA (eds) Modern concepts in gastroenterology. Plenum, New York (in press)

    Google Scholar 

  48. Kagnoff MF (1989) Celiac disease: Adenovirus and alpha gliadin. Curr Top Microbiol Immunol 145: 67–78

    PubMed  CAS  Google Scholar 

  49. Kagnoff MF, Austin RK, Hubert JJ, Bernadin JE, Kasarda DD (1984) Possible role for a human adenovirus in the pathogenesis of celiac disease. J Exp Med 160: 1544–1557

    Article  PubMed  CAS  Google Scholar 

  50. Karagiannis JA, Priddle JD, Jewell DP (1987) Cell-mediated immunity to a synthetic gliadin peptide resembling a sequence from adenovirus 12. Lancet ii: 884–886

    Google Scholar 

  51. Kagnoff MF (1987) Evidence for the role of a human intestinal adenovirus in the pathogenesis of celiac disease. Gut 28: 995–1001

    Article  PubMed  CAS  Google Scholar 

  52. Howell MD, Smith JR, Austin RK, Kelleher D, Nepom GT, Volk B, Kagnoff MF (1988) An extended HLA-D region haplotype associated with celiac disease. Proc Natl Acad Sci USA 85: 222–226

    Article  PubMed  CAS  Google Scholar 

  53. Drachman D (1978) Myasthenia gravis. N Engl J Med 298: 136–186

    Article  PubMed  CAS  Google Scholar 

  54. Aoki T, Drachman DB, Asher DM, Gibs CJ, Bahmanyar S, Molinsky JS (1985) Attempts to implicate viruses in myasthenia gravis. Neurology 35: 185–192

    PubMed  CAS  Google Scholar 

  55. Klavinskis LS, Willcox HN, Richmond JE, Newsom-Davis J (1986) Attempted isolation of viruses from myasthenia gravis thymus. J Neuroimmunol 11: 287–299

    Article  PubMed  CAS  Google Scholar 

  56. Noda M, Furutani Y, Takahashi H, Toyosato M, Tanabe T, Shimizu S, Kikyotani S, Kayano T, Hirose T, Inayama S, Numa S (1983) Cloning and sequence analysis of calf cDNA and human genomic DNA encoding alpha-subunit precursor of muscle acetylcholine receptor. Nature 305: 818–823

    Article  PubMed  CAS  Google Scholar 

  57. Schwimmbeck PL, Dyrberg T, Drachman DB, Oldstone MBA (1989) Molecular mimicry and myasthenia gravis: an autoantigenic site of the acetylcholine receptor oc subunit that has biologic activity and reacts immunochemicaly with herpes simplex virus. J Clin Invest 84: 1174–1181

    Article  PubMed  CAS  Google Scholar 

  58. Stefansson K, Dieperink ME, Richman DP, Gomez CM, Marton LS (1985) Sharing of antigenic determinants between the nicotenic acetylcholine receptor and proteins in Escherichia coli, Proteus vulgaris and Klebsiella pneumoniae. N Engl J Med 312: 221–225

    Article  PubMed  CAS  Google Scholar 

  59. Lernmark Å (1985) Molecular biology of type 1 (insulin-dependent) diabetes mellitus. Diabetologia 28: 195–203

    Article  PubMed  CAS  Google Scholar 

  60. Yoon JW, Austin M, Onodera T, Notkins AL (1979) Virus induced diabetes mellitus: Isolation of a virus from the pancreas of a child with diabetic ketoacidosis. N Engl J Med 300: 1173–1179

    Article  PubMed  CAS  Google Scholar 

  61. Champsaur H, Dussaix E, Samolyk D, Fabre M, Bach CH, Assan R (1980) Diabetes and coxsackie virus B 5 infection. Lancet i: 251

    Google Scholar 

  62. Pak CY, Eun HM, McArthur RG, Yoon JW (1988) Association of cytomegalovirus infection with autoimmune Type 1 diabetes. Lancet ii: 1–4

    Google Scholar 

  63. Ginsberg-Fellner F, Witt ME, Fedun B, Taub F, Dobersen MJ, McEvoy RC, Cooper LZ, Notkins AL, Rubinstein P (1985) Diabetes mellitus and autoimmunity in patients with the congenital rubella syndrome. Rev Infect Dis 7 (suppl 1): 170–176

    Article  Google Scholar 

  64. Lamb JR, Feldmann M (1984) Essential requirement for major histocompatibility complex recognition in T-cell tolerance induction. Nature 308: 72–74

    Article  PubMed  CAS  Google Scholar 

  65. Fujinami RS, Nelson JA, Walker L, Oldstone MBA (1988) Sequence homology and immunologic cross-reactivity of human cytomegalovirus with HLA-DR beta chain: a means for graft rejection and immunosuppression. J Virol 62: 1001–1005

    Google Scholar 

  66. Golding H, Robey FA, Gates FT, Linder W, Reining PR, Hoffman T, Golding B (1988) Identification of homologous regions in human immunodeficiency virus I gp41 and human MHC class II p I domain. J Exp Med 167: 914–923

    Article  PubMed  CAS  Google Scholar 

  67. Golding H, Shearer GM, Hillman K, Lucas P, Manischewitz J, Zajac RA, Clerici M, Gress RE, Boswell NR, Golding B (1989) Common epitope in human immunodeficiency virus (HTV) I- GP41 and HLA class II elicits immunosuppressive autoantibodies capable of contributing to immune dysfunction in HIV I-infected indivisuals. J Clin Invest 83: 1430–1435

    Article  PubMed  CAS  Google Scholar 

  68. Roudier, J, Petersen J, Rhodes GH, Luka J, Carson DA (1989) Susceptibility to rheumatoid arthritis maps to a T-cell epitope shared by the HLA-Dw4 DR ß-1 chain and the Epstein-Barr virus glycoprotein gp110. Proc Natl Acad Sci USA 86: 5104–5108

    Article  PubMed  CAS  Google Scholar 

  69. Michelsen B, Lernmark Å (1987) Molecular cloning of a polymorphic DNA endonuclease fragment associates insulin-dependent diabetes mellitus with HLA-DQ. J Clin Invest 79: 1144–1152

    Article  PubMed  CAS  Google Scholar 

  70. Todd JA, Bell JI, McDevitt HO (1987) HLA-DOß gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature 329: 599 - 604

    Article  PubMed  CAS  Google Scholar 

  71. Atar D, Dyrberg T, Michelsen B, Karlsen A, Kofod H, Mølvig J, Lernmark Å (1989) Site-specific antibodies distinguish single amino acid substitutions in position 57 in HLA-DQ (3-chain alleles associated with insulin-dependent diabetes. J Immunol 143: 533–538

    PubMed  CAS  Google Scholar 

  72. Dyrberg T, Michelsen B, Oldstone M (1988) Virus and host cell antigen sharing in myasthenia gravis and autoimmune diabetes. In: Lernmark Å, Dyrberg T, Terenius L, Hökfelt B (eds) Molecular mimicry in health and disease. Excerpta Medica, Amsterdam, pp 245–254

    Google Scholar 

  73. Sairenji T, Daibata M, Sorli CH, Qvistbäck H, Humphreys RE, Ludvigsson J, Palmer J, Landin-Olsson M, Sundkvist G, Michelsen B, Lernmark Å, Dyrberg T (1990) Relating homology between the EBV BOLF-1 molecule and HLA-DQw8 P chain to recent onset Type 1 diabetes mellitus (submitted)

    Google Scholar 

  74. Burgen ASV (1988) Molecular mimicry and drugs. In: Lernmark Å, Dyrberg T, Terenius L, Hökfelt B (eds) Molecular Mimicry in Health and Disease. Excerpta Medica, Amsterdam, pp 3–11

    Google Scholar 

  75. Damian RT (1974) Molecular mimicry: antigen sharing by parasite and host and its consequences. Am Nat 98: 129 – 149

    Article  Google Scholar 

  76. Damian RT (1988) Parasites and molecular mimicry. In: Lernmark A, Dyrberg T, Terenius L, Hokfelt B (eds) Molecular mimicry in health and disease. Excerpta Medica, Amsterdam, pp 211- 218

    Google Scholar 

  77. Bloom BR (1979) Games parasites play. Nature 279: 21–26

    Article  PubMed  CAS  Google Scholar 

  78. Neu N, Rose NR, Beisel KW, Herskowitz A, Gurri-Glass G, Craig SW (1987) Cardiac myosin induces myocarditis in genetically predisposed mice. J Immunol 139: 3630–3636

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag London Limited

About this chapter

Cite this chapter

Dyrberg, T. (1990). Molecular Mimicry in Autoimmune Disease. In: de Vries, R.R.P., Cohen, I.R., van Rood, J.J. (eds) The Role of Micro-organisms in Non-infectious Diseases. Argenteuil Symposia. Springer, London. https://doi.org/10.1007/978-1-4471-1796-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1796-4_13

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1798-8

  • Online ISBN: 978-1-4471-1796-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics