Quality Assurance as a Dynamical Production Process Guide — Control Elements Supported by Dedicated Knowledge Based Systems

  • Mina-Jaqueline Schachter-Radig
  • Diederich Wermser
Conference paper


Quality assurance is relevant for all steps in the lifecycle of a product, ranging from requirements definition, design, manufacturing and post-production control of each part manufactured to sales and maintenance. Quality management thus requires and enables a semantic integration of manufacturing. Not only data on lots of products to be manufactured, tools to be applied etc. have to be communicated, but rather higher level informations like tendencies in deviations (which e.g. may be used to control readjustment of corresponding tools), critical steps in manufacturing (which e.g. may recommend a less sensitive design of future products) etc. As this kind of integration obviously does not allow to predefine behaviour of respective systems procedurally, knowledge based systems are required which allow for a flexible and situation adaptive reaction of various components as well as the complete system. This paper describes current work and experiences of the authors concerning definition, development, introduction and usage of generic modules which each support single quality elements and will be connected to form a complete quality framework, which including more and more modules will integrate manufacturing through high level distributed quality control.


Preventive Maintenance Knowledge Source Semantic Integration Inference Structure Inspection Plan 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. /Biasing 87/.
    Bläsing, J.P.: Rechnerintegrierte Qualitätssicherung. CIM-Handbuch - Wirtschaftlichkeit durch Integration, Hrsg. Uwe W. Genner, Vieweg, Sohn, Braunschweig (1987)Google Scholar
  2. /Boehm 88/.
    Boehm, B.: A Spiral Model of Software Development and Enhancement. IEEE COMPUTER, Vol. 21, No 5, May 1988Google Scholar
  3. /Breuker 87/.
    Breuker, J.A. (editor): Model Driven Knowledge Acquisition, Interpretation Models, Deliverable D1, Esprit Project P 1098, 1987.Google Scholar
  4. /Busche 89/.
    Busche, R.; Krickhahn, R.: Modellgestützte Entwicklung eines Wissensbasierten Systems für die Fehlerdiagnose komplexer Industrieanlagen. KI 3/89, Oldenbourg Verlag, München, Sept. 1989Google Scholar
  5. /Chon 90/.
    Chon, Y.-Ch.; Streng, K.-H.: Process Monitoring and Preventive Maintenance - Evaluation Report, Esprit Project 1098, Deliverable D 10.2 of Task F10, January 1990Google Scholar
  6. /DIN 55350/.
    DIN 55350 Part 11: Begriffe der Qualitätssicherun und Statistik, Hrsg. Deutsches Institut Für Normung e.V., Ausg. 1987Google Scholar
  7. /Dorbes 89/.
    Dorbes, G.; Hickman, F.; Porter, M.; Streng, K.-H.; Tansley, S., Taylor, R.: System Evolution - Principles and Methods (The Lifecycle Model). Draft Deliverable of Task G9, Esprit Project 1098, Nov89.Google Scholar
  8. /Flexplan 89/.
    Deliverable 1 - Analysis Report, Esprit Project 2457 (Flexplan) June 1989Google Scholar
  9. /Readdie 89/.
    Readdie, M.; Streng, K.-H.; Wermser, D.: KBS Project Development Metrication Methods. Draft Deliverable of Task G10, Esprit Project 1098, Nov89Google Scholar
  10. /Schachter 87/.
    Schachter-Radig, M.-J.: Expertensysteme. In: CIM-Handbuch - Wirtschaftlichkeit durch Integration, Hrsg. Uwe W. Genner, Vieweg, Sohn, Braunschweig (1987)Google Scholar
  11. /Schachter 89/.
    Schachter-Radig, M.-J. et al.: KBSM - Structures and Models: Basis for the Reusable Development of Knowledge Based Systems. Systems 89, Springer Verlag, Berlin 1989Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Mina-Jaqueline Schachter-Radig
    • 1
  • Diederich Wermser
    • 1
  1. 1.NTE NeuTech EntwicklungsgesellschaftMünchen 2Germany

Personalised recommendations