Advertisement

Primary Hyperoxaluria

  • R. W. E. Watts
  • M. A. Mansell
Part of the The Bloomsbury Series in Clinical Science book series (BLOOMSBURY)

Abstract

The primary hyperoxalurias comprise three inborn errors of metabolism in which the urinary oxalate excretion is abnormally high (Table 5.1). Increases in the urinary oxalate excretion due to dietary and seasonal fluctuations in the intake and absorption of oxalate rarely cause the excretion of more than 0.5 mmol/24 h in adults. The three types of primary hyperoxaluria have the same clinical phenotype. Type 1 occurs most commonly, and there are three clinically identifiable variants: infantile, juvenile and adult, recognisable by the age at which urolithiasis and/or renal failure begin. The juvenile group, with clinical presentation between 2 and about 18 years, is the most frequent subgroup. There have been too few reports of type II and type III patients to permit any similar classification for them by age of onset. Besides the individual patient’s rate of oxalate production, the propensity to form stones will depend on urine concentration and the levels of the protective substances such as the pyrophosphate anion and glycosaminoglycans which normally inhibit crystal growth and aggregation in the urinary tract (Robertson et al. 1976). The glycosaminoglycans appear to be particularly important from this point of view with respect to calcium oxalate.

Keywords

Calcium Oxalate Urinary Oxalate Primary Hyperoxaluria Zellweger Syndrome Urinary Oxalate Excretion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison MG, Cook HM, Milne DB, Gallagher S, Clayman RV (1986) Oxalate degradation by gastrointestinal bacteria in humans. J Nutr 116: 455–460PubMedGoogle Scholar
  2. Allsop J, Jennings PR, Danpure CJ (1987) A new microassay for human liver alanine:glyoxylate aminotransferase. Clin Chim Acta (in press)Google Scholar
  3. Backman U, Danielson BG, Ljunghall S (1985) Renal stones. Aetiology, management, treatment. Almquist and Wicksell, Stockholm p. 78Google Scholar
  4. Chadwick VS, Modha K, Dowling RH (1973) Mechanism for hyperoxaluria in patients with ileal dysfunction. N Engl J Med 289: 172–176PubMedCrossRefGoogle Scholar
  5. Chalmers RA, Tracey BM, Mistry J, Griffiths KD, Green A, Winterborn MH (1984) L-glyceric aciduria (primary hyperoxaluria type II) in siblings in two unrelated families. J Inher Metab Dis 7 (Suppl 2): 133–134PubMedGoogle Scholar
  6. Chesney RW, Friedman AL, Breed AL, Adams ND, Lemann J (1984) Renal transplantation in primary oxaJuria. J Paediatr 104: 322–323CrossRefGoogle Scholar
  7. Constable AR, Joekes AM, Kasidas GP, O’Regan P, Rose GA (1979) Plasma level and renal clearance of oxalate in normal subjects and in patients with primary hyperoxaluria or chronic renal failure or both. Clin Sci 56: 299–304PubMedGoogle Scholar
  8. Crawhall JC, Watts RWE (1962) The metabolism of glyoxylate by human and rat liver mitochondria. Biochem J 85: 163–171PubMedGoogle Scholar
  9. Danpure CJ, Purkiss P, Jennings PR, Watts RWE (1986) Mitochondrial damage and the subcellular distribution of 2-oxoglutarate: glyoxylate carboligase in normal human and rat liver and the liver of a patient with primary hyperoxaluria type 1. Clin Sci 74: 417–425Google Scholar
  10. Danpure CJ, Jennings PR (1986a) Peroxisomal alanine: glyoxylate aminotransferase deficiency in primary hyperoxaluria type 1. FEBS Lett 201: 20–24PubMedCrossRefGoogle Scholar
  11. Danpure CJ, Jennings PR (1986b) Alanine:glyoxylate and serine:pyruvate aminotransferases in primary hyperoxaluria type 1. Biochem Soc Trans 14: 1059–1060Google Scholar
  12. Danpure CJ, Jennings PR, Watts RWE (1987) The enzymological diagnosis of primary hyperoxaluria type I by measuring the alanine:glyoxylate aminotransferase activity in hepatic percutaneous needle biopsies. Lancet I: 289–291CrossRefGoogle Scholar
  13. David DS, Cheigh JS, Stenbzel KH, Rubin AL (1983) Successful renal transplantation in a patient with primary hyperoxaluria. Transplant Proc 15: 2168–2171PubMedGoogle Scholar
  14. Day DL, Scheinman JI, Mahan J (1986) Radiological aspects of primary hyperoxaluria. Am J Radiol 146: 395–401Google Scholar
  15. Dean BM, Griffin WJ, Watts RWE (1966) Primary hyperoxaluria. The demonstration of a metabolic abnormality in kidney tissue. Lancet I: 406CrossRefGoogle Scholar
  16. Dean BM, Watts RWE, Westwick WJ (1967) Metabolism of [1-14C]glyoxylate, [1-14C]glycollate, [1-14C]glycine and [2-14C]glycine by homogenates of kidney and liver tissue from hyperoxaluric and control subjects. Biochem J 105: 701–707PubMedGoogle Scholar
  17. Deodhar SD, Tung KSK, Zulke V, Nakamoto S (1969) Renal homotransplantation in a patient with primary famiUal oxalosis. Arch Pathol 87: 118–124PubMedGoogle Scholar
  18. Elder TD, Wyngaarden JC (1960) The biosynthesis and turnover of oxalate in normal and hyperoxaluric subjects. J Clin Invest 39: 1337–1344PubMedCrossRefGoogle Scholar
  19. Gibbs DA, Watts RWE (1970) The action of pyridoxine in primary hyperoxaluria. Clin Sci 38: 277–286PubMedGoogle Scholar
  20. Hatch MR, Freel RW, Goldner AM, Earnest DL (1984) Oxalate and chloride absorption by the rabbit colon: sensitive to metabolic and anion transport inhibitors. Gut 25: 232–237PubMedCrossRefGoogle Scholar
  21. Hesse von A, Bach D (1982) Harnsteine Pathobiochemie und klinisch-chemie Diagnostik. In: Breuer H, Büttner H, Stamm D (eds) Klinische Chemie in Einzeldarstellungen Band 5. Georg Thieme, Stuttgart, pp 33–40Google Scholar
  22. Hirashima M, Hayakawa T, Koike H (1967) Mammalian a-keto acid dehydrogenase complexes. 2. An improved procedure for the preparation of 2-oxo-glutarate dehydrogenase complex from pig heart muscle. J Biol Chem 242: 902–907PubMedGoogle Scholar
  23. Hodgkinson A, Wilkinson R (1974) Plasma oxalate concentration and renal excretion of oxalate in man. Clin Sci 46: 61–73Google Scholar
  24. Hoffman GS, Schumacher HR, Paul H, Cherian V, Reed R, Ramsay AG, Franck WA (1982) Calcium oxalate microcrystalline-associated arthritis in end-stage renal disease. Ann Int Med 97: 36–42PubMedGoogle Scholar
  25. Iancu TC, Danpure CJ (1987) Primary hyperoxaluria type I: ultrastructural observations in liver biopsies. J Inher Metab Dis 10: 330–338PubMedCrossRefGoogle Scholar
  26. Kasidas GP, Rose GA (1979) A new enzymatic method for the determination of glycollate in urine and plasma. Clin Chim Acta 96: 25–36PubMedCrossRefGoogle Scholar
  27. Kasidas GP, Rose GA (1985) Continuous-flow assay for urinary oxalate using immobilised oxalate oxidase. Ann Clin Biochem 22: 412–419PubMedGoogle Scholar
  28. Kasidas GP, Rose GA (1986) Measurement of plasma oxalate in healthy subjects and in patients with chronic renal failure using immobihsed oxalate oxidase. Clin Chim Acta 154: 49–58PubMedCrossRefGoogle Scholar
  29. Klauwers J, Wolff PL, Cohn R (1968) Failure of renal transplantation in primary oxalosis. JAMA 209: 551CrossRefGoogle Scholar
  30. Knichelbein RG, Aronson PS, Dobbins JW (1986) Oxalate transport by anion exchange across the rat ileal brush border. J Clin Invest 77: 170–175CrossRefGoogle Scholar
  31. Koch J, Stokstad ELR (1966) Partial purification of a 2-oxoglutarate:glyoxylate carbohgase from rat liver mitochondria. Biochem Biophy Res Comm 23: 585–596CrossRefGoogle Scholar
  32. Koch J, Stokstad ELR, Williams HE, Smith LH (1967) Deficiency of 2-oxoglutarate:glyoxylate carboligase activity in primary hyperoxaluria. Proc Natl Acad Sci USA 57: 1123–1129PubMedCrossRefGoogle Scholar
  33. Marangella M, Fruttero B, Bruno M, Linari F (1982) Hyperoxaluria in idiopathic calcium stone disease: further evidence of intestinal hyperabsorption of oxalate. Clin Sci 63: 381–385PubMedGoogle Scholar
  34. Meredith TA, Wright JD, Gammon JA, Fellner SK, Warshaw BL, Maio M (1984) Ocular involvement in primary hyperoxaluria. Arch Ophthalmol 102: 584–587PubMedCrossRefGoogle Scholar
  35. Morgan SH, Maher ER, Purkiss P, Watts RWE, Curtis JR (1988) Oxalate metabolism in end-stage renal disease: the effect of ascorbic acid and pyridoxine. Nephrology Dialysis Transplantation (in press).Google Scholar
  36. Morgan SH, Purkiss P, Watts RWE, Mansell MA (1987) Oxalate dynamics in chronic renal failure. Comparison with normal subjects and patients with primary hyperoxaluria. Nephron 47: 253 7Google Scholar
  37. Nakatani T, Kawasaki Y, Minatogawa Y, Okuno E, Kido R (1985) Peroxisome localized human hepatic alanine: glyoxylate aminotransferase and its application to clinical diagnosis. Clin Biochem 18: 311–316PubMedCrossRefGoogle Scholar
  38. O’Callagan JW, Arbuckle SM, Craswell PW, Boyle PB, Searle JW, Smythe WR (1984) Rapid progression of oxalosis-induced cardiomyopathy despite adequate haemodialysis. Miner Electrolyte Metab 10: 48–51Google Scholar
  39. Ratner S, Nocito V, Green DE (1944) Glycine oxidase. J Biol Chem 152: 119–133Google Scholar
  40. Richardson KE, Farinelh MF (1981) The pathways of oxalate biosynthesis. In: Smith LH, Robertson WG, Finlayson B (eds) Urolithiasis, Clinical and Basic Research. Plenum Press, New York, pp 855–863Google Scholar
  41. Robertson WG, Knowles F, Peacock M (1976) Urinary acid mucopolysaccharide inhibitors of calcium oxalate crystalisation. In: Fleisch H, Robertson WG, Smith LH, Vahlensieck W (eds) Urolithiasis Research. Plenum Press, New York, London, pp 331–338CrossRefGoogle Scholar
  42. Rose GA (1982) Urinary stones: clinical and laboratory aspects. MTP Press, Lancaster, pp 245–248Google Scholar
  43. Rowsell EV, Carnie JA, Snell K, Taktak B (1972) Assays for glyoxylate aminotransferase activities. Int J Biochem 3: 247–257CrossRefGoogle Scholar
  44. Scheinman J, Najarian JS, Mauer SM (1984) Successful strategies for renal transplantation in primary oxalosis. Kidney Int 25: 804–811PubMedCrossRefGoogle Scholar
  45. Schlossberg MA, Bloom RJ, Richert DA, Westerfield WW (1970) Carboligase activity of a-ketoglutarate dehydrogenase. Biochemistry 9: 1148–1153PubMedCrossRefGoogle Scholar
  46. Scowen EF, Stansfeld AG, Watts RWE (1959) Oxalosis and primary hyperoxaluria. J Path Bact 77: 195–205PubMedCrossRefGoogle Scholar
  47. Vanrenterghem Y, Vandamme B, Lernt T, Michielsen P (1984) Severe vascular complications in oxalosis after successful cadaveric kidney transplantation. Transplantation 38: 93–95PubMedCrossRefGoogle Scholar
  48. Veall N, Gibbs DF (1982) The accurate determination of tracer clearance rates and equilibrium distribution volumes from single injection plasma measurements using numerical analysis. In: Joekes AM, Constable AR, Brown NJG, Tauxe WN (eds) Radionuclides in Nephrology. Academic Press/Gruene and Stratton, New York, pp 125–130Google Scholar
  49. Wanders RJA, von Roermund CWT, Westra R, Schutgens RBH, van der Ender MA, Tager JM, Monnens LAH, Baadenhuysen H, Govaerts L, Przyrembel H, Wolff ED, Blom W, Huijmans JGM, van Laerhoven FGM (1987) Alanine:glyoxylate aminotransferase and the urinary excretion of oxalate and glycolate in hyperoxaluria type I and the Zellweger syndrome. Clin Chim Acta 165: 311–319PubMedCrossRefGoogle Scholar
  50. Watts RWE, Veall N, Purkiss P (1983) Sequential studies of oxalate dynamics in primary hyperoxaluria. Clin Sci 65: 627–633PubMedGoogle Scholar
  51. Watts RWE, Veall N, Purkiss P (1984) Oxalate dynamics and removal rates during haemodialysis and peritoneal dialysis in patients with primary hyperoxaluria and severe renal failure. Clin Sci 66: 591–597PubMedGoogle Scholar
  52. Watts RWE, Veall N, Purkiss P, Mansell MA, Haywood EF (1985a) The effect of pyridoxine on oxalate dynamics in three cases of primary hyperoxaluria (with glycollic aciduria). Clin Sci 69: 87–90PubMedGoogle Scholar
  53. Watts RWE, Calne RY, Williams R, Mansell MA, Veall N, Purkiss P, Rolles K (1985b) Primary hyperoxaluria (Type I): attempted treatment by combined hepatic and renal transplantation. Q J Med 57: 697–703PubMedGoogle Scholar
  54. Watts RWE, Calne RY, Rolles K, Danpure CJ, Morgan SH, Mansell MA, Williams R, Purkiss P (1987) Successful treatment of primary hyperoxaluria type I by combined hepatic and renal transplantation: correction of the enzymatic and metabolic defect. Lancet II: 474–475CrossRefGoogle Scholar
  55. Watts RWE, Morgan SH, Purkiss P, Mansell MA, Baker LRI, Brown CB (1988) Timing of renal transplantation in the management of pyridoxine resistant type I primary hyperoxaluria. Transplantation (in press)Google Scholar
  56. Whelchel JD, Alison DV, Luke RG, Curtis J, Dietheim A (1983) Successful renal transplantation in hyperoxaluria. A report of two cases. Transplant 35: 161–164Google Scholar
  57. Williams HE (1976) Oxalic acid: absorption, excretion and metabolism. In: Fleisch H, Robertson WG, Smith LH, Vahlensieck W (eds) Urolithiasis Research. Plenum Press, New York, London, pp 181–188CrossRefGoogle Scholar
  58. Williams HE, Smith LH Jr (1971) Possible pathogenic mechanism for hyperoxaluria in L-glyceric aciduria. Science 171: 390–391PubMedCrossRefGoogle Scholar
  59. Williams HE, Smith LH Jr (1983) Primary hyperoxaluria. In: Stanbury JB, Wyngaarden JB, Fredrickson DS, Goldstein JL, Brown MS (eds). The Metabolic Basis of Inherited Disease, 5 Edn. McGraw-Hill, New York, pp 204–228Google Scholar
  60. Wise PJ, Danpure CJ, Jennings PR (1987) Immunological heterogeneity of hepatic alanine:glyoxylate aminotransferase in primary hyperoxaluria type 1. FEBS Lett 222: 17–20PubMedCrossRefGoogle Scholar
  61. Yendt ER, Cohanim M (1986) Absorptive hyperoxaluria: A new clinical entity — successful treatment with hydrochlorothiazide. Clin Invest Med 9: 44–50PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • R. W. E. Watts
  • M. A. Mansell

There are no affiliations available

Personalised recommendations