Skip to main content

The Removal and/or Reduction of Radionuclides in the Food Chain

  • Conference paper
Radionuclides in the Food Chain

Part of the book series: ILSI Monographs ((ILSI MONOGRAPHS))

Abstract

The general population is exposed to radioactive substances that originate from a variety of sources, including naturally occurring terrestrial radionuclides, with K, Ra, U, Th, and Rn, the most important among about 70 radioactive elements. Other radionuclides are produced by the interaction of cosmic rays on atmospheric nuclei. The dose delivered by these nuclides, where the most important are 14C and tritium, is negligible compared to terrestrial sources of natural radioactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rundo J and Taylor BT (1964) In: The assessment of radioactive caesium in man, the assessment of radioactivity in man. Proc Symp, Heidelberg, May 1964, International Atomic Energy Agency, Vienna, vol 2, p3

    Google Scholar 

  2. Barth J and Bruckner BH (1969) Evaluation of clays as binding agents for reduction of radionuclides in milk. J Agr Food Chem 17:1340–1343

    Article  CAS  Google Scholar 

  3. Wilson AR and Spiers FW (1967) Fallout caesium-137 and potassium in newborn infants. Nature 215:470–474

    Article  PubMed  CAS  Google Scholar 

  4. Gustafson PF and Miller JE (1969) The significance of cesium-137 in man and his diet. Health Phys 16:167–183

    Article  PubMed  CAS  Google Scholar 

  5. Kahn B, Jones IR, Carter MW, Robbins PJ, and Straub CP (1965) Relation between amount of cesium-137 in cows’ feed and milk. J Dairy Sci 48:556–562

    Article  CAS  Google Scholar 

  6. Sansom BF (1966) The metabolism of caesium-137 in dairy cows. J Agric Sci 66:389–393

    Article  CAS  Google Scholar 

  7. Stewart HF, Ward GM, and Johnson JE (1965) Availability of fallout cesium-137 to dairy cattle from different types of feed. J Dairy Sci 48:709–713

    Article  PubMed  CAS  Google Scholar 

  8. Assimakopoulos PA, Ioannides KG, Pakou AA, and Paradopoulou CV (1987) Transport of the radioisotopes iodine-131, cesium-134 and cesium-137 from the fallout following the accident at the Chernobyl nuclear reactor into cheese and other cheese-making products. J Dairy Sci 70:1338–1343

    Article  PubMed  CAS  Google Scholar 

  9. Murthy GK, Campbell JE, Mazurovsky EB, and Edmondson LF (1962) US Patent No 3,020,161

    Google Scholar 

  10. Van der Stricht (1967) Dispositif et procédé de décontamination radioactive de produits alimentaires notamment liquides. Euratom Patent No 1.517.279, pp 3

    Google Scholar 

  11. Higgins IR (1968) Apparatus for the treatment of milk. US Patent No 3,415,377, PP 15

    Google Scholar 

  12. Poznanski S, Kornacki K, Chojnowski W, and Jedrychowski L (1972) Tests suitability of polish ion exchange resins for removal from milk of radioactive contamination. Medycyna Weterynaryjna 28:737–740

    CAS  Google Scholar 

  13. Walker JP and Edmondson FL (1969) Studies on ion exchange resins for the removal of radionuclides from milk. Health Phys 16:85–91

    Article  PubMed  CAS  Google Scholar 

  14. Murthy GK (1969) Preparation of product from milk treated with cationic resin for removing radionuclides from milk. J Dairy Sci 52:629–632

    Article  CAS  Google Scholar 

  15. Edmondson LF (1964) Ion exchange process for removing radioactive contamination from milk. J Dairy Sci 47:1201–1207

    Article  CAS  Google Scholar 

  16. Glascock RF and Bryant DWT (1968) A pilot plant for the removal of cationic fission products from milk. II. Efficiency of the process and composition of the product. J Dairy Res 35:269–286

    Article  CAS  Google Scholar 

  17. Glascock RF and Bryant DWT (1971) A double-bed process for the removal of cationic fission products from milk. J Dairy Res 38:217–236

    Article  CAS  Google Scholar 

  18. Cohen B, Ashworth M, Glascock RF, and Bryant DWT (1973) The removal of fission products from milk. The use of the baby monkey (macaca irus) for the nutritional evaluation of milk treated by two processes. J Dairy Res 40:53–61

    Article  PubMed  CAS  Google Scholar 

  19. Ionics Incorporated (1965) Process and apparatus for the decontamination of milk products by electrodialysis. Great Britain Patent No 1,005,125

    Google Scholar 

  20. Thiele D (1969) Die dekontaminierung von milch durch elektrodialyse unter praxisahnlichen bedingungen. Kieler-Milchwirtschaftliche-Forschungsberichte 21:447–459

    CAS  Google Scholar 

  21. Sawhney BL (1964) Sorption and fixation of microquantities of cesium by clay minerals: effect of saturating cations. Soil Sci Soc Am Proceedings 28:183–186

    Article  CAS  Google Scholar 

  22. Endres O and Fischer E (1969) Untersuchungen zur Dekontamination von gemüse. Deut Lebensm Rundschau 65:1–5

    CAS  Google Scholar 

  23. Rohleder K (1972) Untersuchungen uber die Aufnahme radioaktiver Stoffe durch Grünkohl aus dem Boden und aus der Atmosphäre und Versuche zur Dekontamination. Zeitsch für Leben Forsch 149:223–227

    Article  CAS  Google Scholar 

  24. Perkins HJ and Strachan G (1964) Decontamination of potato tubers containing cesium-137. Science 144:59–60

    Article  PubMed  CAS  Google Scholar 

  25. Weaver CM and Harris ND (1979) Removal of radioactive strontium and cesium from vegetables during laboratory scale processing. J Food Sci 44:1491–1493

    Article  CAS  Google Scholar 

  26. Ralls JW, Maagdenberg HJ, Guckeen TR, and Mercer WA (1971) Removal of radioactive strontium and cesium from vegetables and fruits during preparation for preservation. J Food Sci 36:653–656

    Article  CAS  Google Scholar 

  27. Frindik O (1970) Elektrodialytische dekontamination von apfelsaft. Zeitsch für Leben Forsch 144:179–187

    Article  CAS  Google Scholar 

  28. Wellman HN, Kahn B, Salem AJ, and Robbins PJ (1968) Assessment of deposited radiostrontium during childhood. In: Kornberg HA and Norwood WD (eds) Diagnosis and treatment of deposited radionuclides. Excerpta Medica Foundation, pp 386–394

    Google Scholar 

  29. Stroube WB, Jelinek CF, and Baratta EJ (1985) Survey of radionuclides in foods, 1978–1982. Health Phys 49-731–735

    Article  PubMed  CAS  Google Scholar 

  30. Ilin DI and Moskalev YI (1957) On the metabolism of cesium, strontium and a mixture of beta-emitters in cows. J Nuclear Energy II 5:413–420

    Google Scholar 

  31. Murthy GK, Masurovsky EB, Campbell JE, and Edmondson LF (1961) Method for removing cationic radionuclides from milk. J Dairy Sci 44:2158–2170

    Article  CAS  Google Scholar 

  32. Walter HE, Sadler AM, Easterly DG, and Edmondson LF (1967) Pilot plant fixed-bed ion-exchange resin system for removing iodine-131 and radiostrontium from milk. J Dairy Sci 50:1221–1225

    Article  PubMed  CAS  Google Scholar 

  33. Stroup WH, Reyes AL, Murthy GK, Read RB, and Dickerson RW (1968) Combined process for removing radioactive iodine and strontium from milk by ion exchange. J Dairy Sci 51:1500–1502

    Article  PubMed  CAS  Google Scholar 

  34. Bales RE and Hickey JLS (1966) Commercial processing of milk for concurrent removal of cationic and anionic radionuclides. In: Radioisot radiat, Dairy Sci Technol, Proc Semin, pp 121–136

    Google Scholar 

  35. Sparling EM, Baldi EJ, Marshall RO, Heinemann B, Walter HE, and Fooks JH (1967) Large scale fixed bed ion-exchange system for removing strontium-90 from fluid milk, I Processing results. J Dairy Sci 50:423–425

    Article  PubMed  CAS  Google Scholar 

  36. Fooks JH, Terrill JG, Heinemann BH, Baldi EJ, and Walter HE (1967) Evaluation of full scale strontium removal system for fluid milk. Health Phys 13:279–286

    Article  PubMed  CAS  Google Scholar 

  37. Heinemann B, Baldi EJ, Marshall RO, Sparling EM, Walter HE, and Fooks JH (1967) Large scale fixed bed ion-exchange system for removing strontium-90 from fluid milk, II Compositional studies. J Dairy Sci 50:426–430

    Article  PubMed  CAS  Google Scholar 

  38. Dickerson RW, Reyes AL, Murthy GK, and Read RB (1968) Development of a pulse-bed ion exchange contactor for removing cationic radionuclides from milk. J Dairy Sci 51:1317–1323

    Article  PubMed  Google Scholar 

  39. Van’t Riet B (1967) removal of strontium-90 from milk with calcium pyrophosphate, strontium pyrophosphate or a mixture thereof. US Patent No 3,359,117

    Google Scholar 

  40. Wenner V (1974) Contamination du lait par des éléments radioactifs et possibilité pratiques pour la décontamination du lait contenant des radio-éléments. Technicien du Lait, pp 5–18

    Google Scholar 

  41. Kudo T (1969) Procédés pour enlever des produits de contamination radioactifs de produits alimentaires ou de l’eau. Brevet Fr 1.582.677, pp 14

    Google Scholar 

  42. Carr TEF, Harrison GE, Loutit JF, and Sutton A (1962) Relative availability of strontium in cereals and milk. Nature 194:200–201

    Article  PubMed  CAS  Google Scholar 

  43. Demott BJ and Easterly DG (1960) Removal of iodine-131 from milk. J Dairy Sci 43:1148–1150

    Article  CAS  Google Scholar 

  44. Murthy GK, Gilchrist JE, and Campbell JE (1962) Method for removing iodine-131 from milk. J Dairy Sci 45:1066–1074

    Article  CAS  Google Scholar 

  45. Myers AG, Snoeyink VL, and Snyder DW (1985) Removing barium and radium through calcium cation exchange. J Am Water Assoc 77:60–66

    CAS  Google Scholar 

  46. Snyder DW, Snoeyink VL, and Pfeffer JL (1986) Weak-acid ion exchange for removing barium, radium and hardness. J Am Water Assoc 78:98–104

    CAS  Google Scholar 

  47. Hamilton JG (1947) The metabolism of the fission products and the heaviest elements. Radiology 49:325–343

    PubMed  CAS  Google Scholar 

  48. Schroeder HA and Balassa JJ (1965) Abnormal trace metals in man: niobium. J Chron Dis 18:229–241

    Article  PubMed  CAS  Google Scholar 

  49. Fletcher CR (1969) The radiological hazards of zirconium-95 and niobium-95. Health Phys 16:209–220

    Article  PubMed  CAS  Google Scholar 

  50. Simonovic I, Kargacin B, and Kostial K (1986) The effect of composite oral treatment for internal contamination with several radionuclides on 131-I thyroid uptake in humans. J Appl Toxicol 6:109–111

    Article  PubMed  CAS  Google Scholar 

  51. Snipes MB and Riedesel ML (1969) Studies of diet as a factor in cesium-137 metabolism by rats. J Nutr 97:212–218

    PubMed  CAS  Google Scholar 

  52. Mraz FR and Patrick H (1957) Organic factors controlling the excretory pattern of potassium-42 and cesium-134 in rats. J Nutr 61:535–546

    PubMed  CAS  Google Scholar 

  53. Johnson JE, Ward GM, Firestone E, and Knox KL (1968) Metabolism of radioactive cesium-134 and 137, and potassium by dairy cattle as influenced by high and low forage diet. J Nutr. 94:282–288

    PubMed  CAS  Google Scholar 

  54. Richmond CR (1968) Acceleration, the turnover of internally deposited radiocesium. In: Kornberg HA and Norwood WD (eds) Diagnosis and treatment of deposited radionuclides. Excerpta Medica Foundation, pp. 315–328

    Google Scholar 

  55. Mraz FR (1959) Influence of dietary potassium and sodium on cesium-134 and potassium-42 excretion in sheep. J Nutr 68:655–662

    PubMed  CAS  Google Scholar 

  56. Sastry BVR and Bush MT (1964) Enhancement of the renal excretion of cesium-137 in rats treated with acetazolamide and related compounds. J Pharmacol Exp Ther 143:30–41

    PubMed  CAS  Google Scholar 

  57. Van den Hoek J (1976) Cesium metabolism in sheep and the influence of orally ingested bentonite on cesium absorption and metabolism. Z Tierphysiol Tierernährg u Futtermittelkde 37:315–321

    Article  Google Scholar 

  58. Hazzard DG (1969) Percent cesium-134 and strontium-85 in milk, urine, and feces of goats on normal and verxite-containing diets. J Dairy Sci 52:990–994

    Article  PubMed  CAS  Google Scholar 

  59. Hazzard DG, Withrow TJ, and Bruckner BH (1969) Verxite Flakes for in vivo binding of cesium-134 in cows. J Dairy Sci 52:995–997

    Article  PubMed  CAS  Google Scholar 

  60. Nigrovic V (1963) Enhancement of the excretion of radiocesium in rats by ferric cyanoferrate (II). J Rad Biol 7:307–309

    Article  CAS  Google Scholar 

  61. Nigrovic V (1965) Retention of radiocesium by the rats as influenced by Prussian blue and other compounds. Phys Med Biol 10:81–91

    Article  PubMed  CAS  Google Scholar 

  62. Madshus K, Strömme A, Bohne F, and Nigrovic V (1966) Diminution of radiocesium body-burden in dogs and human beings by Prussian blue. Int J Rad Biol 10:519–520

    Article  CAS  Google Scholar 

  63. Bozorgzadeh A and Catsch A (1972) Evaluation of the effectiveness of colloidal and unsoluble ferrihexacyanoferrates (II) in removing internally deposited radiocesium. Arch Int Pharmacodynamic Therapie 197:175–188

    CAS  Google Scholar 

  64. Havlicek F, Kleisner I, Dvorak P, and Pospisil J (1967) Die Wirkung von Zyanoferraten auf die Ausscheidung von Radiozäsium bei Ratten und Ziegen. Strahlentherapie 134:123–129

    PubMed  CAS  Google Scholar 

  65. Giese W and Hantzsch D (1970) Vergleichende Untersuchungen über die Cs-137 Eliminierung durch verschiedene Eisenhexacyano-ferratkomplexe bei Ratten. Zentral-blatt für Veterinarmedizin 11:185–190

    Google Scholar 

  66. Nezel K (1970) Ueber die Verhinderung der Cesium-137-Aufnahme bein Legehennen. Z Lebensm Unters Forsch 144:25–31

    Article  CAS  Google Scholar 

  67. Giese W (1971) Das Verhalten von Radiocesium bei Laboratoriums und Haustieren sowie Möglichkeiten zur Verminderung der Radioaktiven Strahlenbelastung, Tierärztliche Hochschule Hannover, Habilitationsschrift, pp 99

    Google Scholar 

  68. Smith H (1968) Experiences in the removal of radioactive strontium from animals by modifying physiological parameters. In: Kornberg HA and Norwood WD (eds) Diagnosis and treatment of deposited radionuclides. Excerpta Medica Foundation, pp 372–385

    Google Scholar 

  69. Spencer H, Lewin I, Samachston J, and Belcher MJ (1969) Effect of aluminum phosphate gel on radiostrontium absorption in man. Radiat Res 38:307–320

    Article  PubMed  CAS  Google Scholar 

  70. Kostial K. Maljkovic T, Kadic M, and Manitasevic R (1967) Reduction of the absorption and retention of strontium in rats. Nature 215:182

    Article  PubMed  CAS  Google Scholar 

  71. Boni AL (1969) Variations in the retention and excretion of Cs-137 with age and sex. Nature 222:1188–1189

    Article  PubMed  CAS  Google Scholar 

  72. Kostial K, Kargacin B, and Simonovic I (1983) Efficiency of a composite treatment for mixed fission products in rats. J Appl Toxicol 3:291–296

    Article  PubMed  CAS  Google Scholar 

  73. Nigrovic V and Catsch A (1965) Dekorporation von Radionukliden. Strahlentherapie 128:283–287

    PubMed  CAS  Google Scholar 

  74. Seidel A, Volf V, and Catsch A (1971) Effectiveness of Zn-DTPA in removal of plutonium from rats. 19:399–400

    CAS  Google Scholar 

  75. Schubert J, Fried JF, Rosenthal MW, and Lindenbaum A (1961) Tissue distribution of monomeric and polymeric plutonium as modified by a chelating agent. Radiat Res 15:220–226

    Article  PubMed  CAS  Google Scholar 

  76. Lloyd RD, Mays CW, McFarland SS, Taylor GN, and Atherton DR (1976) A comparison of Ca-DTPA and Zn-DTPA for chelating 241Am in beagles. Health Phys 31:281–284

    PubMed  CAS  Google Scholar 

  77. Taylor DM and Volf V (1980) Oral chelation treatment of injected Am-241 or Pu-239 in rats. Health Phys 38:147–158

    Article  PubMed  CAS  Google Scholar 

  78. Arnaud MJ, Clement C, Getaz F, Tannhauser F, Schoenegge R, Blum J, and Giese W (1988) Synthesis, effectiveness and metabolic fate in cows of the caesium complexing compound, ammonium ferric hexacyanoferrate labeled with 14C, in cows. J. Dairy Res, 55:1–13

    Article  PubMed  CAS  Google Scholar 

  79. AllgaĂĽer Alpenmich (1987) Patent 370446.4, Verfahren zum entfernen von radioaktiven Metallen aus FlĂĽssigkeiten, Lebens. und Futtermitteln

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag New York Inc.

About this paper

Cite this paper

Arnaud, M.J. (1988). The Removal and/or Reduction of Radionuclides in the Food Chain. In: Harley, J.H., Schmidt, G.D., Silini, G. (eds) Radionuclides in the Food Chain. ILSI Monographs. Springer, London. https://doi.org/10.1007/978-1-4471-1610-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1610-3_16

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1612-7

  • Online ISBN: 978-1-4471-1610-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics