Where does the Task Frame go?

  • H. Bruyninckx
  • J. De Schutter


This paper discusses the “Task Frame” (TF) as a central concept in (hybrid) robot force control and task specification. The title serves a double purpose: it refers to the desirable ability of a force controller to adapt on-line the motion constraint model on which the control is based, but also to the scientific evolution of the TF concept during the last two decades and its role in future developments.


Kalman Filter Force Control Contact Model Twist Space Statistical Significance Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bar-Shalom, Y. and X.-R. Li (1993). Estimation and Tracking, Principles, Techniques, and Software. Artech House.Google Scholar
  2. Bruyninckx, H. (1995). Kinematic Models for Robot Compliant Motion with Identification of Uncertainties. Ph. D. thesis, Department of Mechanical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium.Google Scholar
  3. Bruyninckx, H. and J. De Schutter (1996). Specification of force-controlled actions in the “Task Frame Formalism”: A survey. IEEE Trans. Rob. Automation 12(5), 581–589.CrossRefGoogle Scholar
  4. Bruyninckx, H., S. Demey, S. Dutré, and J. De Schutter (1995). Kinematic models for model based compliant motion in the presence of uncertainty. Int. J. Robotics Research 14(5), 465–482.CrossRefGoogle Scholar
  5. De Schutter, J., H. Bruyninckx, W.-H. Zhu, and M. W. Spong (1997). Force control: a bird’s eye view. In B. Siciliano (Ed.), IEEE CSS/RAS International Workshop on ‘‘Control Problems in Robotics and Automation: Future Directions”. San Diego, CA: Springer Verlag.Google Scholar
  6. De Schutter, J. and J. Leysen (1987). Tracking in compliant robot motion: Automatic generation of the task frame trajectory based on observation of the natural constraints. In R. Bolles (Ed.), Proceedings of the 4th International Symposium of Robotics Research, Santa Cruz, CA. MIT Press.Google Scholar
  7. De Schutter, J., D. Torfs, S. Dutré, and H. Bruyninckx (1997). Invariant hybrid position/force control of a velocity controlled robot with compliant end effector using modal decoupling. Int. J. Robotics Research 16(3), 340–356.CrossRefGoogle Scholar
  8. Duffy, J. (1990). The fallacy of modern hybrid control theory that is based on “orthogonal complements” of twist and wrench spaces. J. Robotic Systems 7(2), 139–144.CrossRefMathSciNetGoogle Scholar
  9. Dutré, S., H. Bruyninckx, and J. De Schutter (1996). Contact identification and monitoring based on energy. In IEEE Int. Conf. Robotics and Automation, Minneapolis, MN, pp. 1333–1338.Google Scholar
  10. Dutré, S., H. Bruyninckx, and J. De Schutter (1997). The analytical Jacobian and its derivative for a parallel manipulator. In IEEE Int. Conf. Robotics and Automation, Albuquerque, NM, pp. 2961–2966.Google Scholar
  11. Dutré, S., H. Bruyninckx, S. Demey, and J. De Schutter (1997). Solving contact and grasp uncertainties. In Int. Conf. Intel. Robots and Systems, Grenoble, France, pp. 114–119.Google Scholar
  12. Gelb, A. E. (1978). Optimal Estimation (3rd ed.). Cambridge, MA: MIT Press.Google Scholar
  13. Jazwinski, A. H. (1970). Stochastic processes and filtering theory. New York, NY: Academic Press.MATHGoogle Scholar
  14. Karger, A. and J. Novak (1985). Space kinematics and Lie groups. New York, NY: Gordon and Breach.Google Scholar
  15. Lipkin, H. and J. Duffy (1988). Hybrid twist and wrench control for a robotic manipulator. Trans. ASME J. Mech. Transm. Automation Design 110, 138–144.CrossRefGoogle Scholar
  16. Lončarić, J. (1985). Geometrical Analysis of Compliant Mechanisms in Robotics. Ph. D. thesis, Harvard University, Cambridge, MA.Google Scholar
  17. Mason, M. T. (1981). Compliance and force control for computer controlled manipulators. IEEE Trans. on Systems, Man, and Cybernetics SMC-11(6), 418–432.CrossRefGoogle Scholar
  18. Park, F. C. (1995). Distance metrics on the rigid-body motions with applications to mechanism design. Trans. ASME J. Mech. Design 117, 48–54.CrossRefGoogle Scholar
  19. Raibert, M. and J. J. Craig (1981). Hybrid position/force control of manipulators. Trans. ASME J. Dyn. Systems Meas. Control 102, 126–133.CrossRefGoogle Scholar
  20. Wampler, C. W. (1984). Multiprocessor control of a telemanipulator with optical proximity sensors. Int. J. Robotics Research 3(1), 40–50.CrossRefGoogle Scholar
  21. West, H. and H. Asada (1985). A method for the design of hybrid position/force controllers for manipulation constrained by contact with the environment. In IEEE Int. Conf. Robotics and Automation, St. Louis, MS, pp. 251–259.Google Scholar
  22. Whitney, D. E. (1987). Historical perspective and state of the art in robot force control. Int. J. Robotics Research 6(1), 3–14.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 1998

Authors and Affiliations

  • H. Bruyninckx
    • 1
  • J. De Schutter
    • 1
  1. 1.Dept. of Mech. Eng.K.U. LeuvenLeuvenBelgium

Personalised recommendations