Skip to main content

Tactile Displays for Increased Spatial and Temporal Bandwidth in Haptic Feedback

  • Conference paper
Robotics Research

Abstract

We are investigating tactile feedback modalities designed to convey high frequency vibratory information and small-scale object shape. Vibrotactile feedback systems transmit information about textures and events like contact and slip that reveal the mechanical state of the remote environment. Shape display devices consist of regular arrays of pin elements that rest against the user’s finger tip. Each pin is raised and lowered to approximate the desired surface shape on the skin. Experiments with prototype tactile feedback systems help improve our understanding of human tactile information requirements and to determine the relationship between task characteristics and the benefits of tactile feedback.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bliss, J. C., et al. (1970). “Optical-to-Tactile Image Conversion for the blind,” IEEE Trans. Man-Machine Systems, MMS-11(1):58–65.

    Article  Google Scholar 

  • Boff, K.R., and Lincoln, J.E., eds. (1988). Engineering Data Compendium: Human Perception and Performance. Wright-Patterson AFB, Ohio: Armstrong Aerospace Medical Research Laboratory.

    Google Scholar 

  • Cohn, M. B., M. Lam, and R. S. Fearing (1992). “Tactile feedback for teleoperation,” in Telemanipulator Technology, SPIE.

    Google Scholar 

  • Dennerlein, J.T., P. Millman, and R.D. Howe (1997). “Vibrotactile Feedback for Industrial Telemanipulators,” Symp. Haptic Interfaces for Virtual Env. and Teleop. Sys., ASME Intl. Mech. Eng. Congress, Dallas, Nov. 15–21.

    Google Scholar 

  • Hasser, C. and Weisenberger J.M. (1993). Preliminary evaluation of a shape memory alloy tactile feedback display. Symp. Haptic Interfaces Virtual Env. Teleop. Sys., ASME Winter Annual Meeting, New Orleans.

    Google Scholar 

  • Howe, R. D. (1994). “Tactile sensing and control of robotic manipulation,” Journal of Advanced Robotics, 8(3):245–261.

    Article  Google Scholar 

  • Howe, R.D., Peine, W.J., Kontarinis, D.A., and Son, J.S. (1995). Remote Palpation Technology, IEEE Engineering in Medicine and Biology. 14(3):318–323, May/June.

    Article  Google Scholar 

  • Johansson, R. S., & Vallbo, Å. B. (1983). Tactile sensory coding in the glabrous skin of the human hand. Trends in Neuroscience 6(1), 27–32.

    Article  Google Scholar 

  • Johansson, R. S., & Westling, G. (1987). “Signals in tactile afferents from the fingers eliciting adaptive motor responses during precision grip.” Experimental Brain Research, 66:141–154.

    Article  Google Scholar 

  • Johnson, K.O. and Phillips, J.R. (1981). Tactile Spatial Resolution. I. Two-Point discrimination, Gap Detection, Grating Resolution, and Letter Recognition. J. Neurophys. 46(6):1177–1191.

    Google Scholar 

  • Kontarinis, D.A. and R.D. Howe (1995). “Tactile display of vibratory information in teleoperation and virtual environments,” Presence 4(4):387–402.

    Google Scholar 

  • Minsky, M.D.R. (1995). Computational haptics: The Sandpaper system for synthesizing texture for a force-feedback display. Ph.D. Thesis, MIT, Program in Media Arts & Sciences.

    Google Scholar 

  • Pawluk, D. T.V. and R. D. Howe (1997). “Contact pressure distribution on the human finger pad,” presented at the 26th Congress of the International Society of Biomechanics, Tokyo, August 25–29.

    Google Scholar 

  • Peine, W. J., K. C. Foucher, and R. D. Howe (1997). “Finger speed during single digit palpation,” in press, Human Factors.

    Google Scholar 

  • Sheridan, T. B. (1992). Telerobotics, Automation, and Human Supervisory Control. Cambridge, MA: MIT Press.

    Google Scholar 

  • Wellman, P. and R.D. Howe (1995). “Towards realistic vibrotactile display in virtual environments,” Symp. Haptic Interfaces for Virtual Env. and Teleop. Sys., Proc. ASME Intl. Mech. Eng. Congress, San Francisco, Nov. 12–17, T.E. Alberts, ed., DSC-Vol. 57-2, p. 713–718.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag London Limited

About this paper

Cite this paper

Howe, R.D., Kontarinis, D.A., Peine, W.J., Wellman, P.S. (1998). Tactile Displays for Increased Spatial and Temporal Bandwidth in Haptic Feedback. In: Shirai, Y., Hirose, S. (eds) Robotics Research. Springer, London. https://doi.org/10.1007/978-1-4471-1580-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1580-9_25

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1582-3

  • Online ISBN: 978-1-4471-1580-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics