Advertisement

Towards a new Robot Generation

  • G. Hirzinger
  • B. Brunner
  • S. Knoch
  • R. Koeppe
  • M. Schedl

Abstract

Key items in the development of a new smart robot generation are explained by hand of DLR’s recent activities in robotics research. These items are the design of multisensory gripper and articulated hands systems, ultra-light-weight links and joint drive systems with integrated joint torque control, learning and self-improvement of the dynamical behaviour, modelling the environment using sensorfusion, and new sensor-based off-line programming techniques based on teaching by showing in a virtual environment.

Keywords

Industrial Robot Iterative Close Point Visual Servoing Torque Sensor Laser Range Finder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Hirzinger, B. Brunner, J. Dietrich, J. Heindl, „ROTEX — The First Remotely Controlled Robot in Space“, IEEE Int. Conference on Robotics and Automation, San Diego, California, May 8–13, 1994Google Scholar
  2. [2]
    G. Hirzinger, J. Butterfass, S. Knoch, H. Liu, DLR’s multisensory articulated hand, ISER’95 Fifth International Symposium on Experimental Robotics, Barcelona, Catalonia, June 15–18, 1997Google Scholar
  3. [3]
    G. Hirzinger, A. Baader, R. Koeppe, M. Schedi, “Towards a new generation of multisensory light-weight robots with learning capabilities”, Prod. IFAC 1993 World Congress, Sydney, Australia, 1993.Google Scholar
  4. [4]
    B. Gombert, G. Hirzinger, G. Plank, M. Schedi, „Modular concepts for a new generation of light weight robots“, Prod. IEEE Int. Conf. on Industrial Elektronics, Instrumentation and Control (IECON), Bologna, Italy, 1994Google Scholar
  5. [5]
    B. Brunner, K. Landzettel, B.M. Steinmetz, and G. Hirzinger, „Tele Sensor Programming — A task-directed programming approach for sensor-based space robots“, Proc. ICAR’95 7th International Conference on Advanced Robotics, Sant Feliu de Guixols, Catalonia, Spain, 1995.Google Scholar
  6. [6]
    G. Grunwald and G.D. Hager, „Towards Task-Directed Planning of Cooperating Sensors”, Proc. SPIE OE/Technology: Sensor Fusion V, Conf. 1828, Boston, Mass., 1992.Google Scholar
  7. [7]
    V. Senft, G. Hirzinger, „Redundant Motions of Non Redundant Robots — A New Approach to Singularity Treatment“, 1995 IEEE Int. Conf. on Robotics and Automation ICRA’95, Nagoya, Japan, vol 2, pp. 1553–1558, 1995Google Scholar
  8. [8]
    J. Shi, Y. Lu, „Chatter Free Variable Structure Perturbarion Estimator on the Torque Control of Flexible Robot Joints with Disturbance and Parametric Uncertainties“, Proc. IEEE Conf. on Industrial Electronics, Control and Instrumentation, IECON’96, Taipei, 1996Google Scholar
  9. [9]
    G. Wei, G. Hirzinger, B. Brunner, „Sensorimotion coordination and sensor fusion by neural networks“, Proc. IEEE Int. Conf. on Neural Networks, San Francisco, USA, 1993Google Scholar
  10. [10]
    P. Wunsch, G. Hirzinger, „Real-time visual tracking of 3D-objects with dynamic handling of occlusion“, IEEE Int. Conf. on Robotics and Automation, Albuquerque, NM, 1997Google Scholar
  11. [11]
    P. Wunsch, G. Hirzinger, „Registration of CAD-models to images by iterative inverse perspective matching“, ICPR’96 Int. Conf. on Pattern Recognition, Vienna, Austria, 1996Google Scholar
  12. [12]
    G.Q. Wei, G. Hirzinger, „Learning shape from shading by a multilayer network“, IEEE Transactions on Neural Networks, vol. 7, pp. 985–995, 1996CrossRefGoogle Scholar
  13. [13]
    G.Q. Wei, K. Arbter, G. Hirzinger, „Real-time visual servoing for laparoscopic surgery”, IEEE Engineering in Medicine and Biology, vol. 16, 1997Google Scholar
  14. [14]
    P.v.d. Smagt, G. Hirzinger, „Local minima in ill-conditioned feed-forward neural networks“, Workshop on ANNs and Continuous Optimization at NIPS 1996“, Snowmass, Colorado, 1996Google Scholar
  15. [15]
    P.v.d. Smagt, G. Hirzinger, „Optimization in feed-forward neural networks: On conjugate gradient, network size, and local minima“, Workshop on Tricks of the Trade at NIPS, Snowmass, Colorado, 1996Google Scholar
  16. [16]
    A. Baader, G. Hirzinger, „A self-organizing algorithm for multisensory surface reconstruction“, Proc. IROS’94 IEEE Int. Conf. on Intelligent Robots and Systems, München, 1994Google Scholar
  17. [17]
    F. Lange, G. Hirzinger, „Learning of a controller for non-recurring fast movements“, Advanced Robotics, pp. 229–244, 1996Google Scholar
  18. [18]
    M.W. Walker and R.P.C. Paul, „Resolved-Acceleration Control of Mechanical Manipulators“, IEEE Trans. Automatic Control, vol. 25, pp. 468–474, 1980CrossRefMATHGoogle Scholar
  19. [19]
    O. Khatib, „A Unified Approach for Motion and Force Control of Robot Manipulators: The Operational Space Formulation“, IEEE J. Robotics and Automation, vol. 3, pp.43–53, 1987.CrossRefGoogle Scholar
  20. [20]
    E. D. Dickmanns and V. Graefe. Dynamic monocular machine vision. Machine Vision and Applications, 1:223–240,1988.CrossRefGoogle Scholar
  21. [21]
    R. Koeppe, G. Hirzinger, „Learning Compliant Motions by Task-Demonstration in Virtual Environments“, Proc. of the Fourth International Symposium on Experimental Robotics, ISER’95, Stanford, CA, pp. 188–193, 1995.Google Scholar
  22. [22]
    R. Koeppe, A. Breidenbach, and G. Hirzinger, “Skill representation and acquisition of compliant motions using a teach device,” presented at Proc. IEEE/RSJ Int. Conference on Intelligent Robots and Systems IROS’96, Osaka, Japan, 1996.Google Scholar
  23. [23]
    F. Arai, L. Rong, and T. Fukuda. Asymptotic convergence of feedback error learning method and improvement of learning speed. In IEEE Int. Conf. on Intelligent Robots and Systems (IROS), Yokohama, Japan, July 26–30 1993Google Scholar
  24. [24]
    F. Lange and G. Hirzinger, “Application of multilayer perceptrons to decouple the dynamical behaviour of robot links,” presented at Proc. International Conference on Artificial Neural Networks, ICANN’95, Paris, France, 1995.Google Scholar
  25. [25]
    E. Ralli and G. Hirzinger, “Fast path planning for 6-dof robot manipulators in static or partially changing environments,” presented at Proc. ICAR’95 7th International Conference on Advanced Robotics, Sant Feliu de Guixols, Catalonia, Spain, 1995.Google Scholar

Copyright information

© Springer-Verlag London Limited 1998

Authors and Affiliations

  • G. Hirzinger
    • 1
  • B. Brunner
    • 1
  • S. Knoch
    • 1
  • R. Koeppe
    • 1
  • M. Schedl
    • 1
  1. 1.OberpfaffenhofenDeutsches Zentrum für Luft und Raumfahrt e.V. (DLR)WesslingGermany

Personalised recommendations