Skip to main content

Motion planning in humans and robots

  • Conference paper
Robotics Research

Abstract

We present a general framework for generating trajectories and actuator forces that will take a robot system from an initial configuration to a goal configuration in the presence of obstacles observed with noisy sensors. Studies of human voluntary manipulation tasks suggest that human motions can be described as solutions of certain optimization problems. Motivated by these observations, we formulate the robot motion planning problem as a problem of finding the trajectory and the associated actuator inputs that optimize a performance criterion dictated by specific task requirements. We show that this approach can be extended to incorporate uncertainty by formulating the motion planning problem as a two-person, zero sum game with the optimal solution being a saddle-point strategy. We present several examples to illustrate our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Basar, T. and G. J. Olsder (1982). Dynamic noncooperative game theory. London: Academic Press.

    MATH  Google Scholar 

  • Bertsekas, D. P. (1982). Constrained optimization and Lagrange multiplier methods. New York: Academic Press.

    MATH  Google Scholar 

  • Bobrow, J., S. Dubowsky, and J. Gibson (1985). Time-optimal control of robotic manipulators along specified paths. Int. J. Robotic Research 4(3), 3–17.

    Article  Google Scholar 

  • Buckley, C. E. (1985). The application of continuum methods to path planning. Ph. D. thesis, Stanford University, Stanford, CA.

    Google Scholar 

  • Camarinha, M., F. S. Leite, and P. Crouch (1995). Splines of class c k on non-Euclidean spaces. IMA J. Math. Control Inform. 12(4), 399–410.

    Article  MATH  MathSciNet  Google Scholar 

  • Desai, J. P. and V. Kumar (1997). Nonholonomic motion planning for multiple mobile manipulators. In Proceedings of 1997 International Conference on Robotics and Automation, Albuquerque, NM.

    Google Scholar 

  • Desai, J. P., M. Žefran, and V. Kumar (1997, September). Two-arm manipulation tasks with friction assisted grasping. In IROS’97, Grenoble, France.

    Google Scholar 

  • Flash, T. and N. Hogan (1985). The coordination of arm movements: An experimentally confirmed mathematical model. The Journal of Neuroscience 5(7), 1688–1703.

    Google Scholar 

  • Garvin, G. J., M. Žefran, E. A. Henis, and V. Kumar (1997). Two-arm trajectory planning in a manipulation task. Biological Cybernetics 76, 65–71.

    Article  Google Scholar 

  • Kamberova, G., R. Mandelbaum, and M. Mintz (1997). Statistical decision theory for mobile robots. Technical report, GRASP Laboratory, University of Pennsylvania, Philadelphia, PA.

    Google Scholar 

  • Kawato, M. (1990). Optimization and learning in neural networks for formation and control of coordinated movement. Technical Report TR-A-0086, ATR Auditory and Visual Perception Research Laboratories, Kyoto, Japan.

    Google Scholar 

  • Latombe, J.-C. (1991). Robot motion planning. Boston: Kluwer Academic Publishers.

    Book  Google Scholar 

  • LaValle, S. M. and R. Sharma (1995). A framework for motion planning in stochastic environments: applications and computational issues. In Proceedings of 1995 International Conference on Robotics and Automation, Volume 3, San Diego, CA, pp. 3063–3068.

    Google Scholar 

  • Lygeros, J., D. N. Godbole, and S. Sastry (1995). A game-theoretic approach to hybrid system design. In R. Alur, T. A. Henzinger, and E. D. Sontag (Eds.), Hybrid Systems III. Verification and Control, pp. 1–12. Berlin, Germany: Springer-Verlag.

    Google Scholar 

  • Murray, R. M., Z. Li, and S. S. Sastry (1994). A Mathematical Introduction to Robotic Manipulation. CRC Press.

    Google Scholar 

  • Nakamura, Y. and H. Hanafusa (1987). Optimal redundancy control of robot manipulators. International Journal of Robotics Research 6.

    Google Scholar 

  • Noakes, L., G. Heinzinger, and B. Paden (1989). Cubic splines on curved spaces. IMA J. of Math. Control & Information 6, 465–473.

    Article  MATH  MathSciNet  Google Scholar 

  • Rimon, E. and D. E. Koditschek (1992). Exact robot navigation using artificial potential functions. IEEE Transactions on Robotics and Automation 8(5), 501–518.

    Article  Google Scholar 

  • Shin, K. G. and N. D. McKay (1985). Minimum-time control of robotic manipulators with geometric constraints. IEEE Transactions on Automatic Control AC-30(6), 531–541.

    Article  Google Scholar 

  • Singh, S. and M. C. Leu (1989). Optimal trajectory generation for robotic manipulators using dynamic programming. ASME Journal of Dynamic Systems, Measurement, and Control 109.

    Google Scholar 

  • Vukobratović, M. and M. Kirćanski (1982). A method for optimal synthesis of manipulation robot trajectories. ASME Journal of Dynamic Systems, Measurement, and Control 104.

    Google Scholar 

  • Žefran, M. (1996). Continuous methods for motion planning. Ph. D. thesis, U. of Pennsylvania, Philadelphia, PA.

    Google Scholar 

  • Žefran, M., J. Desai, and V. Kumar (1996). Continuous motion plans for robotic systems with changing dynamic behavior. Proceedings of 2nd Int. Workshop on Algorithmic Foundations of Robotics.

    Google Scholar 

  • Žefran, M. and V. Kumar (1996, April). Planning of smooth motions on se(3). In Proceedings of 1996 International Conference on Robotics and Automation, Minneapolis, MN, pp. 121–126.

    Google Scholar 

  • Žefran, M. and V. Kumar (1997). Rigid body motion interpolation. Computer Aided Design. Accepted for publication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag London Limited

About this paper

Cite this paper

Kumar, V., Žefran, M., Ostrowski, J. (1998). Motion planning in humans and robots. In: Shirai, Y., Hirose, S. (eds) Robotics Research. Springer, London. https://doi.org/10.1007/978-1-4471-1580-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1580-9_10

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1582-3

  • Online ISBN: 978-1-4471-1580-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics