The Biology of Liver Metastasis

  • Robert Radinsky
  • Isaiah J. Fidler


Metastasis—the spread of malignant tumour cells from a primary neoplasm to distant parts of the body where they multiply to form new growths—is a major cause of death from cancer. The treatment of metastatic cancer poses a major problem to clinical oncologists, because the presence of multiple metastases makes complete eradication by surgery, radiation or drugs nearly impossible. For most tumours, the presence of liver metastasis renders the patient essentially incurable. Modification of current treatment regimens is unlikely to significantly impact on the natural history of this disease. A better understanding of the biology of liver metastases and the molecular events leading to the metastatic phenotype is essential if new and innovative therapeutic approaches are to be developed to treat this disease.


Epidermal Growth Factor Receptor Liver Metastasis Nude Mouse Natl Cancer Inst Metastatic Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pickren JW, Tsukada Y, Lane WW. Liver metastasis: Analysis of autopsy data, In Liver Metastasis, Weiss L, Gilbert HA (eds) 1982, vol 5, pp. 2–18. Boston, GK Hall Medical Publishers.Google Scholar
  2. 2.
    Dong Z, Radinsky R, Fan D, Tsan R, Bucana CD, Wilmanns C, Fidler IJ. Organ specific modulation of steady-state mdr gene expression and drug resistance in murine colon cancer cells. J Natl Cancer Inst1994; 86:913–920.Google Scholar
  3. 3.
    Fidler IJ, Wilmanns C, Staroselsky A, Radinsky R, Dong Z, Fan D. Modulation of tumor cell response to chemotherapy by the organ environment. Cancer Metastasis Rev 1994; 13:209–222.PubMedCrossRefGoogle Scholar
  4. 4.
    Staroselsky A, Fan D, O’Brian CA, Bucana CD, Gupta KP, Fidler IJ. Site-dependent differences in response of the UV- 2237 murine fibrosarcoma to systemic therapy with Adriamycin. Cancer Res 1990; 40:7775–7780.Google Scholar
  5. 5.
    Wilmanns C, Fan D, O’Brian CA, RAdinsky R, Bucana CD, Tsan R, Fidler IJ. Modulation of doxorubicin sensitivity and level of P-glycoprotein expression in human colon carcinoma cells by ectopic and orthotopic environments in nude mice. Int J Oncol 1993, 3:413–422.Google Scholar
  6. 6.
    Fidler IJ. Modulation of the organ microenvironment for treatment of cancer metastasis. J Natl Cancer Inst 1995; 87:1588–1592.PubMedCrossRefGoogle Scholar
  7. 7.
    Gohji K, Fidler IJ Tsan R, Radinsky R, von Eschenbach AC, Tsuruo T, Nakajima M. Human recombinant interferonsbeta and gamma decrease gelatinase production and invasion by human KG-2 renal carcinoma cells. Int J Cancer 1994; 58:380–384.PubMedCrossRefGoogle Scholar
  8. 8.
    Nakajima M, Morikawa K, Fabra A, Bucana CD, Fidler IJ. Influence of organ environment on extracellular matrix degradative activity and metastasis of human colon carcinoma cells. J Natl Cancer Inst 1990; 82:1890–1898.Google Scholar
  9. 9.
    Singh RK, Bucana CD, Gutman M, Fan D, Wilson MR, Fidler IJ. Organ site-dependent expression of basic fibroblast growth factor in human renal cell carcinoma cells. Am J Pathol 1994; 145:365–374.PubMedGoogle Scholar
  10. 10.
    Singh RK, Gutman M, Bucana CD, Sanchez R, Llansa N, Fidler IJ. Interferons alpha and beta downregulate the expression of basic fibroblast growth factor in human carcinomas. Proc Natl Acad Sci USA 1995; 92:4562–4566.PubMedCrossRefGoogle Scholar
  11. 11.
    Singh RK, Gutman M, Radinsky R, Bucana CD, Fidler IJ. Expression of interleukin 8 correlates with the metastatic potential of human melanoma cells in nude mice. Cancer Res 1994; 54:3242–3247.PubMedGoogle Scholar
  12. 12.
    Kitadai Y, Radinsky R, Bucana CD, Takahashi Y, Xie K, Tahara E, Fidler IJ. Regulation of carcinoembryonic antigen expression in human colon carcinoma cells by the organ environment. Am J Pathol 1996; 149:1157–1166.PubMedGoogle Scholar
  13. 13.
    Radinsky R. Paracrine growth regulation of human colon carcinoma organ-specific metastases. Cancer Metastasis Rev 1993; 12:345–361.PubMedCrossRefGoogle Scholar
  14. 14.
    Radinsky R, Risin S, Fan D, Dong Z, Bielenberg D, Bucana CD, Fidler IJ. Level and function of epidermal growth factor receptor predict the metastatic potential of human colon carcinoma cells. Clin Cancer Res 1995; 1:19–31.PubMedGoogle Scholar
  15. 15.
    Radinsky R. Modulation of tumor cell gene expression and phenotype by the organ-specific metasatatic environment. Cancer Metastasis Rev 1995; 14:323–338.PubMedCrossRefGoogle Scholar
  16. 16.
    Fidler IJ Special Lecture: Critical factors in the biology of human cancer metastasis: Twenty-eighth GHA Clowes Memorial Award Lecture. Cancer Res 1990; 50:6130–6138.PubMedGoogle Scholar
  17. 17.
    Fidler IJ, Radinsky R. Editorial: Genetic control of cancer metastasis. J Natl Cancer Inst 1990; 82:166–168.PubMedCrossRefGoogle Scholar
  18. 18.
    Kerbel RS. Growth dominance of the metastatic cancer cell: Cellular and molecular aspects. Adv Cancer Res 1990; 55:87–132.Google Scholar
  19. 19.
    Hart IR. ‘Seed and soil’ revisited: mechanisms of site specific metastasis. Cancer Metastasis Rev 1982; 1:5–17.PubMedCrossRefGoogle Scholar
  20. 20.
    Nicolson GL. Cancer metastasis: Tumor cell and host organ properties important in metastasis to specific secondary sites. Biochim Biophys Acta 1988; 948:175–224.PubMedGoogle Scholar
  21. 21.
    Paget S. The distribution of secondary growths in cancer of the breast. Lancet 1889; 1:571–573.CrossRefGoogle Scholar
  22. 22.
    Tarin D, Price JE., Kettlewell MGW et al. Mechanisms of human tumor metastasis studied in patients with peritoneovenous shunts. Cancer Res1984; 44:3584–3592.PubMedGoogle Scholar
  23. 23.
    Ewing J. Neoplastic Diseases, 1928, 6th edn Philadelphia, W.B. Saunders.Google Scholar
  24. 24.
    Boring CC, Squires TS, Tong, T. Cancer Statistics 1993. CA 1993; 41:7–26.Google Scholar
  25. 25.
    Russell AH, Tong D, Dawson LE, Wisbeck W. Adenocarcinoma of the proximal colon: Sites of initial dissemination and patterns of recurrence following surgery alone. Cancer 1984; 53:360–367.PubMedCrossRefGoogle Scholar
  26. 26.
    Benotti P, Steele G. Patterns of recurrent colorectal cancer and recovery surgery. Cancer 1992; 70:1409–1413.PubMedCrossRefGoogle Scholar
  27. 27.
    Buyse M, Zelenuick-Jacquotte A, Chalmers TC. Adjuvant therapy of colorectal cancer: Why we still don’t know. JAMA1988; 259:3571–3578.PubMedCrossRefGoogle Scholar
  28. 28.
    Pestana C, Reitemeier RJ, Moertel CG et al. The natural history of carcinoma of the colon and rectum. Am J Surg 1964; 108:826–829.PubMedCrossRefGoogle Scholar
  29. 29.
    Jessup JM, Gallick GE. The biology of colorectal carcinoma. Curr Probl Cancer1992; 5:264–328.Google Scholar
  30. 30.
    Giavazzi R, Campbell DE, Jessup JM, Cleary K, Fidler IJ Metastatic behavior of tumor cells isolated from primary and metastatic human colorectal carcinomas implanted into different sites of nude mice. Cancer Res 1986; 46:1928–1933.PubMedGoogle Scholar
  31. 31.
    Morikawa K, Walker SM, Jessup JM, Fidler IJ. In vivo selection of highly metastatic cells from surgical specimens of different colon carcinomas implanted into nude mice. Cancer Res 1988; 48:1943–1948.PubMedGoogle Scholar
  32. 32.
    Morikawa K, Walker SM, Nakajima M, Pathak S, Jessup JM, Fidler IJ. Influence of organ environment on the growth, selection, and metastasis of human colon carcinoma cells in nude mice. Cancer Res1988; 48:6863–6871.PubMedGoogle Scholar
  33. 33.
    Giavazzi R, Jessup JM, Campbell DE, Walker SM, Fidler IJ. Experimental nude mouse model of human colorectal cancer liver metastasis. J Natl Cancer Inst 1986; 77:1303–1308.PubMedGoogle Scholar
  34. 34.
    August DA, Ottow RT and Sugarbaker EV. Clinical perspectives of human colorectal cancer metastasis. Cancer Metastasis Rev 1984; 3:303–325.PubMedCrossRefGoogle Scholar
  35. 35.
    Jessup JM, Giavazzi R, Campbell D, Cleary KR, Morikawa K, Hostetter R, Atkinson EN, Fidler IJ. Metastatic potential of human colorectal carcinomas implanted into nude mice: Prediction of clinical outcome in patients operated upon for cure. Cancer Res 1989; 49:6906–6910.PubMedGoogle Scholar
  36. 36.
    Jessup JM, Giavazzi R, Campbell D, Cleary KR, Morikawa K, Fidler IJ. Growth potential of human colorectal carcinomas in nude mice: association with preoperative serum concentration of carcinoembryonic antigen. Cancer Res 1988; 48:1689–1692.PubMedGoogle Scholar
  37. 37.
    Singh RK, Tsan R, Radinsky R. Influence of the host microenvironment on the clonal selection of human colon carcinoma cells during primary tumor growth and metastasis. Clin Expt Metastasis 1997; 15:140–150.CrossRefGoogle Scholar
  38. 38.
    Cornil T, Man MS, Fernandez B, Kerbel RS. Enhanced tumorigenicity, melanogenesis and metastasis of a human malignant melanoma observed after subdermal implantation in nude mice. J Natl Cancer Inst 1989; 81:938–944.PubMedCrossRefGoogle Scholar
  39. 39.
    Shafie SM, Liotta LA. Formation of metastasis by human breast carcinoma cells (MCF-7) in nude mice. Cancer Lett 1980; 11:81–87.PubMedCrossRefGoogle Scholar
  40. 40.
    Tan MH and Chu TM: Characterization of the tumorigenic and metastatic properties of a human pancreatic tumor cell line (ASPC-l) implanted orthotopically into nude mice. Tumour Biol 1985; 6:89–98.PubMedGoogle Scholar
  41. 41.
    McLemore TL, Liu MC, Blacker PC, Gregg M, Alley MC, Abbott BJ, Shoemaker RH et al. Novel intrapulmonary model for orthotopic propagation of human lung cancers in athymic nude mice. Cancer Res 1987; 47:5132–5140.PubMedGoogle Scholar
  42. 42.
    Deuel TF. Polypeptide growth factors: Roles in normal and abnormal cell growth. Annu Rev Cell Biol 1987; 3:443–492.PubMedCrossRefGoogle Scholar
  43. 43.
    Zarrilli R, Bruni CB, Riccio A. Multiple levels of control of insulin-like growth factor gene expression. Mol Cell Endocrinol 1994; 101:R1-R14.PubMedCrossRefGoogle Scholar
  44. 44.
    Stiles CD, Capone GT, Scher CD, Antoniades HN, Van Wyk JJ, Pledger WJ. Dual control of cell growth by somatomedins and platelet-derived growth factor. Proc Natl Acad Sci USA 1979; 76:1279–1283.PubMedCrossRefGoogle Scholar
  45. 45.
    Long L, Nip J, Brodt P. Paracrine growth stimulation by hepatocyte-derived insulin-like growth factor-I: A regulatory mechanism for carcinoma cells metastatic to the liver. Cancer Res 1994; 54:3732–3737.PubMedGoogle Scholar
  46. 46.
    Roberts AB, Thompson NL, Heine U, Flanders C, Sporn MB. Transforming growth factor β: Possible roles in carcinogenesis. Br J Cancer 1988; 57:594–600.PubMedCrossRefGoogle Scholar
  47. 47.
    Schwarz LC, Gingras MC, Goldberg G, Greenberg AH, Wright JA. Loss of growth factor dependence and conversion of transforming growth factor-β1 inhibition to stimulation in metastatic H-ras-transformed murine fibroblasts. Cancer Res 1988; 48:6999–7003.PubMedGoogle Scholar
  48. 48.
    Fan D, Chakrabarty S, Seid C, Bell CW, Schackert H, Morikawa K, Fidler IJ. Clonal stimulation or inhibition of human colon carcinomas and human renal carcinoma mediated by transforming growth factor-f31. Cancer Commun 1989; 1:117–125.PubMedGoogle Scholar
  49. 49.
    Malden L, Novak U, Burgess A. Expression oftransforming growth factor alpha messenger RNA in normal and neoplastic gastrointestinal tract. Int J Cancer 1989; 43:380–384.PubMedCrossRefGoogle Scholar
  50. 50.
    Markowitz SD, Molkentin K, Gerbic C, Jackson J, Stellato T, Willson JKV. Growth stimulation by coexpression of transforming growth factor-a and epidermal growth factor receptor in normal an adenomatous human colon epithelium. J Clin Invest 1990; 86:356–362.PubMedCrossRefGoogle Scholar
  51. 51.
    Mead JE, Fausto N. Transforming growth factor a may be a physiological regulator of liver regeneration by means of an autocrine mechanism. Proc Natl Acad Sci USA 1989; 86:1558–1562.PubMedCrossRefGoogle Scholar
  52. 52.
    Michalopoulos GK. Liver regeneration: Molecular mechanisms of growth control. FASEB J 1990; 4:176–187.Google Scholar
  53. 53.
    Gutman M, Singh RK, Price JE, Fan D, Fidler IJ. Accelerated growth of human colon cancer cells in nude mice undergoing liver regeneration. Invasion Metastasis 1994–95; 14:362–371.Google Scholar
  54. 54.
    Van Dale P, Galand P. Effect of partial hepatectomy on experimental liver invasion by intraportally injected colon carcinoma cells in rats. Invasion Metastasis 1988; 8:217–227.PubMedGoogle Scholar
  55. 55.
    Rothenberg M, Ling V: Multidrug resistance: Molecular biology and clinical relevance. J Natl Cancer Inst 1989; 81:907–910.PubMedCrossRefGoogle Scholar
  56. 56.
    Goldstein LJ, Galski H, Fojo A, Willingham M, Lai SL, Gazdar A, Pinker R, Green A, Grist W, Brodeur GM, Lieber M, Cossman J, Gottesman MM, Pastan I. Expression of a multidrug resistance gene in human tumors. J Natl Cancer Inst 1989; 81:116–124.PubMedCrossRefGoogle Scholar
  57. 57.
    Weinstein RS, Shriram JM, Dominguez JM, Lebovitz MD, Koukoulis GK, Kuszak JR et al. Relationship of the expression of the multidrug resistance gene product (P-glycoprotein) in human colon carcinoma to local tumor aggressiveness and lymph node metastasis. Cancer Res 1991; 51:2720–2726.Google Scholar
  58. 58.
    Morrow CS, Cowan KH. Mechanisms and clinical significance of multidrug resistance. Oncology1988; 2:55–63.Google Scholar
  59. 59.
    Raymond M, Rose E, Housman DE, Gros P. Physical mapping, amplification, and overexpression of the mouse mdr gene family in multidrug-resistant cells. Molec Cell Bioi 1990; 10:1642–1651.Google Scholar
  60. 60.
    Croop JM, Raymond M, Haber D, Devault A, Arceci RJ, Gros P, Housman DE. The three mouse multidrug resistance (mdr) genes are expressed in a tissue-specific manner in normal mouse tissues. Molec Cell Bioi 1989; 9:1346–1350.Google Scholar
  61. 61.
    Devault A, Gros P. Two members of the mouse mdr gene family confer multidrug resistance with overlapping but distinct drug specificities. Molec Cell Bioi 1990; 10:1652–1663.Google Scholar
  62. 62.
    Slack NH, Bross JDJ. The influence of site of metastasis on tumor growth and response to chemotherapy. Br J Cancer 1975; 32:78–86.PubMedCrossRefGoogle Scholar
  63. 63.
    Teicher BA, Herman TS, Holden SA, Wang Y, Pfeffer MR, Crawford JW, Frei E. Tumor resistance to alkylating agents conferred by mechanisms operative only in vivo. Science 1990; 247:1457–1461.PubMedCrossRefGoogle Scholar
  64. 64.
    Wilmanns C, Fan D, O’Brian CA, Bucana CD, Fidler IJ. Orthotopic and ectopic organ environments differentially influence the sensitivity of murine colon carcinoma cells to doxorubicin and 5-fluorouracil. Int J Cancer 1992; 52:98–104.PubMedCrossRefGoogle Scholar
  65. 65.
    Bradley G, Sharma R, Rajalakshmi S, Ling V. P-glycoprotein expression during tumor progression in the rat liver. Cancer Res 1992; 52:5154–5161.PubMedGoogle Scholar
  66. 66.
    Herzog CE, Tsokos M, Bates SE, Fojo AT. Increased mdrliP- glycoprotein expression after treatment of human colon carcinoma cells with P-glycoprotein antagonists. J Bioi Chem 1993; 268:2946–2952.Google Scholar
  67. 67.
    Kerbel RS, Kobayashi H, Graham CH. Intrinsic or acquired drug resistance and metastasis: Are they linked phenotypes? J Cell Biochem 1994; 56:37–47.PubMedCrossRefGoogle Scholar
  68. 68.
    Liotta LA, Thorgeirsson UP, Garbisa S. Role of collagenases in tumor cell invasion. Cancer Metastasis Rev 1982; 1:277–288.PubMedCrossRefGoogle Scholar
  69. 69.
    McDonnell S, Matrisian LM. Stromelysin in tumor progression and metastasis. Cancer Metastasis Rev 1990; 9:305–319.PubMedCrossRefGoogle Scholar
  70. 70.
    Sloane BF. Cathepsin B and cystatins: Evidence for a role in cancer progression. Semin Cancer Bioi 1990; 1:137–152.Google Scholar
  71. 71.
    Stetler-Stevenson WG. Type IV collagenases in tumor invasion and metastasis. Cancer Metastasis Rev 1990; 9:289–303.PubMedCrossRefGoogle Scholar
  72. 72.
    Testa JE, Quigley JP. The role of urokinase-type plasminogen activator in aggressive tumor cell behavior. Cancer Metastasis Rev 1990; 9:353–367.PubMedCrossRefGoogle Scholar
  73. 73.
    Liotta LA, Tryggvason K, Garbissa S, Hart I, Foltz CM, Shafie S. Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 1980; 284:67–68.PubMedCrossRefGoogle Scholar
  74. 74.
    Levy A, Cioce V, Sobel ME, Garbisa S, Grigioni WF, Liotta LA, Stetler-Stevenson WG. Increased expression of the 72 kDa type IV collagenase in human colonic adenocarcinoma. Cancer Res1991; 51 :439–444.Google Scholar
  75. 75.
    Fabra A, Nakajima M, Bucana CD, Fidler IJ. Modulation of the invasive phenotype of human colon carcinoma cells by fibroblasts from orthotopic or ectopic organs of nude mice. Differentiation 1992; 52:101–110.PubMedCrossRefGoogle Scholar
  76. 76.
    Chung LWK. Fibroblasts are critical determinants in prostatic cancer growth and dissemination. Cancer Metastasis Rey 1991; 10:263–275.CrossRefGoogle Scholar
  77. 77.
    Co mil I, Theodorescu D, Man S, Herlyn M, Jambmrosie J, Kerbel RS. Fibroblast cell interactions with human melanoma cells affecting tumor cell growth are a function of tumor progression. Proc Natl Acad Sci USA 1991; 88:6028–6032.CrossRefGoogle Scholar
  78. 78.
    Schor SL, Schor AM. Clonal heterogeneity in fibroblast phenotype: Implications for the control of epithelial-mesenchymal intel’actions. BioEssays 198; 7:200–204.Google Scholar
  79. 79.
    Bouziges F, Simo P, Simon-Assman P, Haffen K, Kedinger M. Altered deposition of basement-membrane molecules in co-cultures of colonic cancer cells and fibroblasts. Int I Cancer 1991; 48:101–108.CrossRefGoogle Scholar
  80. 80.
    Reid LM, Abreu SL, Montgomery K. Extracellular matrix and hormonal regulation of synthesis and abundance of messenger RNAs in cultured liver cells. In: The Liver: Biology and Pathobiology, 2nd edn, Arias 1M, Jakoby WB, Popper H, Schachter D, Shafritz DA, (eds). 1988; 717–737. New York, Raven Press.Google Scholar
  81. 81.
    Roberts AB, Sporn MB, Assoian RK, Smith JM, Roche NS, Wakefield LM, Heine VI, Liotta LA, Falanga V, Kehr LJM. Transforming growth factor type B: Rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA 1986; 83:4167–4171.PubMedCrossRefGoogle Scholar
  82. 82.
    Gordon PB, Choi HU, Conn G, Ahmed A, Ehrmann B, Rosenberg L, Hatcher VB. Extracellular matrix heparan sulfate proteoglycans modulate the mitogenic capacity of acidic fibroblast growth factor. J Cell Physiol 1988; 140:584–592.CrossRefGoogle Scholar
  83. 83.
    Zvibel I, Halay E, Reid LM. Heparin and hormonal regulation of mRNA synthesis and abundance of autocrine growth factors: Relevance to clonal growth of tumours. Molec Cell Bioi 1991; 11:108–116.Google Scholar
  84. 84.
    Goldberg GI, Marmer BL, Grant GA, Eisen AZ, Wilhelm S, He CS. Human 72-kilodalton type IV collagenase forms a complex with a tissue inhibitor of metalloproteinases designated TIMP-2. Proc Natl Acad Sci USA 1989; 86:8207–8211.PubMedCrossRefGoogle Scholar
  85. 85.
    Keski-Oja J, Blasi F, Leof EB, Moses HL. Regulation of the synthesis and activity of urokinase plasminogen activator in A549 human lung carcinoma cells by transforming growth factor-beta. J Cell Bioi 1988; 106:451–459.CrossRefGoogle Scholar
  86. 86.
    Overall CM, Wrana JL, Sodek J. Independent regulation of collagenase, 72-kDa progelatinase, and metalloendoproteinase inhibitor expression in human fibroblasts by transforming growth factor-beta. J Bioi Chern 1989; 25:1860–1869.Google Scholar
  87. 87.
    Welch DR, Fabra A, Nakajima M. Transforming growth factor-beta stimulates mammary adenocarcinoma cell invasion and metastatic potential. Proc Natl Acad Sci USA 1990; 87:7678–7682.PubMedCrossRefGoogle Scholar
  88. 88.
    Hujanen ES, Turpeenniemi-Hujanen T. Recombinant interferon alpha and gamma modulate the invasive potential of human melanoma in vitro. Int I Cancer 1991; 47:576–581.CrossRefGoogle Scholar
  89. 89.
    Barbera-Guillem E, Smith I, Weiss L. Cancer-cell traffic in the liver. I. Growth kinetics of cancer cells after portal-vein delivery. Int J Cancer 1992; 52:974–977.CrossRefGoogle Scholar
  90. 90.
    Coulombe J, Pelletier G. Gangliosides and organ-specific metastatic colonization. Int J Cancer 1993; 53:104–109.CrossRefGoogle Scholar
  91. 91.
    Fujita S, Suzuki H, Kinoshita M, Hirohashi S. Inhibition of cell attachment, invasion and metastasis of human carcinoma cells by anti-integrin beta-1 subunit antibody. Jpn I Cancer Res 1992; 83:1317–1326.Google Scholar
  92. 92.
    Tanabe KK, Ellis LM, Saya H. Expression of the CD44R1 adhesion molecule is increased in human colon carcinomas and metastases. Lancet 1993; 341:725–726.PubMedCrossRefGoogle Scholar
  93. 93.
    Jessup JM, Thomas P. Carcinoembryonic antigen: function in metastasis by human colorectal carcinoma. Cancer Metastasis Rev 1989; 8:263–280.PubMedCrossRefGoogle Scholar
  94. 94.
    Hashino J, Fukuda Y, Oikawa S, Nakazato H, Nakanishi T. Metastatic potential of human colorectal carcinoma SW1222 cells transfected with cDNA encoding carcinoembryonic antigen. Clin Exp Metastasis 1994; 12:324–328.PubMedCrossRefGoogle Scholar
  95. 95.
    Gold P, Freedman SO. Demonstration of tumor-specific antigen in human colonic carcinoma by immunological tolerance and absorption techniques. J Exp Med 1965; 121:439–462.CrossRefGoogle Scholar
  96. 96.
    Steele G Jr, Zamcheck N. The use of carcinoembryonic antigen in the clinical management of patients with colorectal cancer. Cancer Detection Prevention 1985; 8:421–427.Google Scholar
  97. 97.
    Benchimol S, Fuks A, Jothy S, Beauchemin N, Shirota K, Stanners CP. Carcinoembryonic antigen, a human tumor marker, functions as an intercellular adhesion molecule. Cell 1989; 57:327–334.PubMedCrossRefGoogle Scholar
  98. 98.
    Tibbetts LM, Doremus CM, Tzanakakis GN, Vezeridis MP. Liver metastasis with 10 human colon carcinoma cell lines in nude mice and association with carcinoembryonic antigen production. Cancer 1993; 71:315–321.PubMedCrossRefGoogle Scholar
  99. 99.
    Hauck W, Stanners CP. Transcriptional regulation of the carcinoembryonic antigen gene. J Bioi Chern 1995; 270:3602–3610.Google Scholar
  100. 100.
    Toribara NW, Sack TL, Gum JR, Ho SB, Shively JE, Willson JKV, Kim YS. Heterogeneity in the induction and expression of carcinoembryonic antigen-related antigens in human colon cancer cell lines. Cancer Res 1989; 49:3321–3327.PubMedGoogle Scholar
  101. 101.
    Murphy PR, Sato R, Sato Y, Friesen HG. Fibroblast growth factor messenger ribonucleic acid expression in a human astrocytoma cell line: regulation of serum and cell density. Molec Endonucl 1988; 2:591–598.CrossRefGoogle Scholar
  102. 102.
    Xie B, Bucana CD, Fidler IJ. Density-dependent induction of 92-kD type IV collagenase activity in cultures of A431 human epidermoid carcinoma cells. Am J Pathol 1994; 144:1058–1067.Google Scholar
  103. 103.
    Pinto M, Robine-Leon S, Appay M-D et al. Enterocyte-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture. Biol Cell 1983; 47:323–330.Google Scholar
  104. 104.
    Hauck W, Stanners CP. Control of carcinoembryonic antigen gene family expression in a differentiating colon carcinoma cell line, Caco-2. Cancer Res1991; 51:3526–3533.PubMedGoogle Scholar
  105. 105.
    Chakrabarty S, Jan Y, Brattain MG, Tobon A, Varani J. Diverse cellular response elicited from human colon carcinoma cells by transforming growth factor-β. Cancer Res 1989; 49:2112–2117.PubMedGoogle Scholar
  106. 106.
    Kanai T, Hibi T, Hayashi A, Takashima J, Shiozawa M, Aiso S, Toda K, Iwao Y, Watanabe M, Tsuchiya M: Carcinoembryonic antigen mediates in vitro cell aggregation induced by interferon -γ in a human colon cancer cell line: requirement for active metabolism and intact cytoskeleton. Cancer Lett1993; 71:109–117.PubMedCrossRefGoogle Scholar
  107. 107.
    Folkman J. The role of angiogenesis in tumor growths. Semin Cancer Bioi 1992; 3:65–67.Google Scholar
  108. 108.
    Fidler IJ, Ellis LM. The implications of angiogenesis for the biology and therapy of cancer metastasis. Cell1994; 79:185–188.PubMedCrossRefGoogle Scholar
  109. 109.
    Weidner N, Carroll PR, Flax J, Blumenfeld W, Folkman J. Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am J Pathol1993; 143:401–409.Google Scholar
  110. 110.
    Hori A, Sasada R, Matsutani E, Naito K, Sakura Y, Fujita T, Kozai Y. Suppression of solid tumor growth by immunoneutralizing monoclonal antibody against human basic fibroblast growth factor. Cancer Res 1991; 51:6189–6194.Google Scholar
  111. 111.
    Kim K1, Olson K, French T, Vallee B, Fett J. A monoclonal antibody to human angiogenin suppresses tumor growth in athymic mice. Cancer Res 1994; 54:4576–4579.Google Scholar
  112. 112.
    Olsson L. Phenotypic diversity of malignant cell populations: Molecular mechanisms and biological significance. Cancer Res1986; 3:91–114.Google Scholar
  113. 113.
    Teicher BA, Alvarez-Sotomayor E, Huang ZD. Antiangiogenic agents potentiate cytotoxic cancer therapies against primary and metastatic disease. Cancer Res 1992; 52:6702–6704.PubMedGoogle Scholar
  114. 114.
    Takahashi Y, Kitadai Y, Bucana CD, Cleary K, Ellis LM. Expression of vascular endothelial growth factor and its receptor, flk-l, correlates with vascularity, metastasis, and proliferation of human colon cancer. Cancer Res 1995; 55:3964–3968.PubMedGoogle Scholar
  115. 115.
    Warren RS, Yuan H, Matli M, Gillett NA, Ferrara N. Regulation by vascular endothelial growth factor of human colon cancer tumorigenesis in a mouse model of experimental liver metastasis. J Clin Invest 1995; 95:1789–1797.Google Scholar
  116. 116.
    Presta M, Maier JA, Ragnotti GJ. The mitogenic signaling pathway but not the plasminogen activator-inducing pathway of basic fibroblast growth factor is mediated through protein kinase C in fetal bovine aortic endothelial cells. Cell Bioi 1989; 109:1877–1884.CrossRefGoogle Scholar
  117. 117.
    Buckley-Sturrock A, Woodward SC, Senior RM, Grimm GL, Klagsbrun M, Davidson JM. Differential stimulation of collagenase and chemotactic activity in fibroblasts derived from rat wound repair tissue and human skin by growth factors. J Cell Physiol 1989; 138:70–78.Google Scholar
  118. 118.
    Gohji K, Fidler II Tsan R, Radinsky R, von Eschenbach AC, Tsuruo T, Nakajima M. Human recombinant interferonsbeta and -gamma decrease gelatinase production and invasion by human KG-2 renal carcinoma cells. Int J Cancer 1994; 58:380–384.CrossRefGoogle Scholar
  119. 119.
    Nanus DM, Schmitz-Drager BJ, Motzer RJ, Lee AC, Vlamis V, Cordon-Cardo C, Albino AP, Reuter VE. Expression of basic fibroblast growth factor in primary human renal tumors: Correlation with poor survival. J Natl Cancer Inst 1994; 85:1597–1599.Google Scholar
  120. 120.
    Nguyen M, Watanabe H, Budson AE, Richie JP, Hayes DF, Folkman J. Elevated levels of an angiogenic peptide, basic fibroblast growth factor, in the urine of patients with a wide spectrum of cancers. J Natl Cancer Inst 1994; 86:356–361.Google Scholar
  121. 121.
    Ezekowitz RAB, Mulliken JB, Folkman J. Interferon alfa-2a therapy for life-threatening hemangiomas of infancy. N Engl J Med 1992; 326:1456–1463.PubMedCrossRefGoogle Scholar
  122. 122.
    Real FX, Oettgen HF, Krown SE. Kaposi’s sarcoma and the acquired immunodeficiency syndrome: Treatment with high and low doses of recombinant leukocyte interferon.J Clin Oncol 1986; 4:544–551.Google Scholar
  123. 123.
    van der Geer P, Hunter T, Lindberg RA. Receptor proteintyrosine kinases and their signal transduction pathways. Annu Rev Cell Biol 1994; 10:251–337.CrossRefGoogle Scholar
  124. 124.
    Sainsbury JRC, Sherbert GV, Farndon JR, Harris AL. Epidermal growth factor receptors and oestrogen receptors in human breast cancer. Lancet 1986; i:364–366.Google Scholar
  125. 125.
    Bigner SH, Humphrey PA, Wong AJ, Vogelstein B, Mark J, Friedman HS, Bigner DD. Characterization of the epidermal growth factor receptor in human glioma cell lines and xenografts. Cancer Res 1990; 50:8017–8022.PubMedGoogle Scholar
  126. 126.
    Harris AL, Neal DE: Epidermal growth factor and its receptor in human cancer. In: Growth Factors and Oncogenes in Breast Cancer, Sluyser M (ed.) 1987; pp. 60–90. Chichester, UK: Ellis Horwood, Ltd.Google Scholar
  127. 127.
    Neal DE, Marsh C, Bennet MK, Abel PD, Hall RR, Sainsbury JRC, Harris AL. Epidermal growth factor receptor in human bladder cancer: Comparison of invasive and superficial tumours. Lancet 1985; i:366–368.Google Scholar
  128. 128.
    Gullick WJ, Marsden JJ, Whittle N, Ward B, Bobrow L, Waterfield MD. Expression of epidermal growth factor receptors on human cervical, ovarian, and vulvar carcinomas. Cancer Res 1986; 46:285–292.PubMedGoogle Scholar
  129. 129.
    Ullrich AL, Coussens L, Hayflick JS, Dull TJ, Gray A, Tam AW, Lee J, Yarden Y, Libermann TA, Schlessinger J, Downward J, Whittle ELV, Waterfield MD, Seeburg PH. Human epidermal growth factor receptor eDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature (London) 1984; 309:418–425.CrossRefGoogle Scholar
  130. 130.
    Scher HI, Sarkis A, Reuter V, Cohen D, Netto G, Petrylak D, Lianes P, Fuks Z, Mendelsohn J, Cordon-Cardo C. Changing patterns of expression of the epidermal growth factor receptor and transforming growth factor a in the progression of prostatic neoplasms. Clin Cancer Res 1995; 1:545–550.PubMedGoogle Scholar
  131. 131.
    Gross ME, Zorbas MA, Daniels YJ, Garcia R, Gallick GE, Olive M, Brattain MG, Boman BM, Yeoman LC. Cellular growth response to epidermal growth factor in colon carcinoma cells with an amplified epidermal growth factor receptor derived from a familial adenomatous polyposis patient. Cancer Res 1991; 51:1452–1459.PubMedGoogle Scholar
  132. 132.
    Waldman FM, Carroll PR, Kerschmann R, Cohen MB, Field FG, Mayall BH. Centromeric copy number of chromosome 7 is strongly correlated with tumor grade and labeling index in human bladder cancer. Cancer Res 1991; 51:3807–3813.PubMedGoogle Scholar
  133. 133..
    Radinsky R, Bucana CD, Ellis LE, Sanchez R, Cleary KR, Brigati DJ, Fidler IJ. A rapid colorimetric in situ messenger RNA hybridization technique for analysis of epidermal growth factor receptor in paraffin-embedded surgical specimens of human colon carcinomas. Cancer Res 1993; 53:937 -943.PubMedGoogle Scholar
  134. 134.
    Mendelsohn J. The epidermal growth factor receptor as a target for therapy with antireceptor monoclonal antibodies. Sernin Cancer Biol 1990; 1:339–344.Google Scholar
  135. 135.
    Baselga J, Norton L, Masui H, Pandiella A, Coplan K, Miller Jr WH, Mendelsohn J. Antitumor effects of doxorubicin in combination with anti-epidermal growth factor receptor monoclonal antibodies. J Natl Cancer Inst 1993; 85:1327–1333.Google Scholar
  136. 136.
    Lofts FJ, Hurst HC, Sterberg MJE, Gullick WJ. Specific short transmembrane sequences can inhibit transformation by the mutant neu growth factor receptor in vitro and in vivo. Oncogene 1993; 8:2813–2820.PubMedGoogle Scholar
  137. 137.
    Fry DW, Kraker AI, McMichael A, Ambroso LA, Nelson JM, Leopoid WR, Connors RW, Bridges AJ. A specific inhibitor of the epidermal growth factor receptor tyrosine kinase. Science 1994; 265:1093–1095.PubMedCrossRefGoogle Scholar
  138. 138.
    Kashles O, Yard en Y, Fischer R, Ullrich A, Schlessinger J. A dominant negative mutation suppresses the function of normal epidermal growth factor receptors by heterodimerization. Mol Cell Biol 1991; 11:1454–1463.Google Scholar
  139. 139.
    Selva E, Raden DL, Davis RJ: Mitogen-activated protein kinase stimulation by a tyrosine kinase-negative epidermal growth factor receptor. J Bioi Chern 1993; 268:2250–2254.Google Scholar

Copyright information

© Springer-Verlag London Limited 1998

Authors and Affiliations

  • Robert Radinsky
  • Isaiah J. Fidler

There are no affiliations available

Personalised recommendations