Skip to main content

The Role of Nuclear Medicine in the Treatment of Liver Metastases

  • Chapter
Liver Metastases
  • 84 Accesses

Abstract

Although there is the prospect of long-term survival following hepatic resectional surgery,1,2 the majority of patients presenting with metastatic disease require to be considered for other treatment options, given that the mean survival without treatment is <6 months and the median survival time is 1.5 months.3-5 The results of both systemic and regional chemotherapy have been disappointing6 and, although external radiation therapy has seen a resurgence of interest, there are concerns regarding its effect, both on the gastrointestinal tract and on the liver.7,8 Of the novel approaches currently being employed in the management of hepatic metastases, it is clear that nuclear medicine is likely to lead to substantial developments in the management of metastatic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adson MA. Hepatic metastases in perspective. AJR 1983; 140:695–700.

    PubMed  CAS  Google Scholar 

  2. Saenz NC, Cady B, McDermott WV Jr et al. Experience with colorectal carcinoma metastatic to the liver. Surg Clin North Am 1989; 69:361–370.

    PubMed  CAS  Google Scholar 

  3. Jaffe BM, Donegan WL, Watson F et al. Factors influencing the survival in patients with untreated hepatic metastases. Surg Gynec Obstet 1968; 127:1–11.

    PubMed  CAS  Google Scholar 

  4. Bengmark S, Hafstrom L. The natural history of primary and secondary malignant tumors of the liver. The prognosis for patients with hepatic metastases from colonic and rectal carcinoma by laparotomy. Cancer 1969; 23:198–202.

    Article  PubMed  CAS  Google Scholar 

  5. Ramming KP, Sparks FC, Eilber FR. Management of hepatic metastases. Semin Oncol 1977; 4:71–80.

    PubMed  CAS  Google Scholar 

  6. Huberman MS. Comparison of systemic chemotherapy with hepatic arterial infusion in metastatic colorectal carcinoma. Semin Oncol 1983; 10:238–247.

    PubMed  CAS  Google Scholar 

  7. Wharton JT, Delclos L, Gallager S et al. Radiation hepatitis induced by abdominal irradiation with the cobalt-60 moving strip technique. AJR 1973; 117:73–80.

    CAS  Google Scholar 

  8. Turek-Maischeider M, Kazem I. Palliative irradiation for liver metastases. JAMA 1975; 232:625–628.

    Article  PubMed  CAS  Google Scholar 

  9. Blanchard RJW. Treatment of liver tumours with yttrium-90 microspheres. Can J Surg 1983; 26:442–443.

    Google Scholar 

  10. Harbert JC, Ziessman HA. Therapy with intraarterial microspheres. In: Nuclear Medicine Annual Freeman LM, Weissman HS (eds) 1987: 295–319. New York, Raven Press.

    Google Scholar 

  11. Kohler G, Milstein C. Continuous culture of fused cells secreting antibody of predifined specificity. Nature 1975; 256:465–467.

    Article  Google Scholar 

  12. Zalutsky MR. Antibodies in Radiodiagnosis and Therapy, 1989; Boca Raton, Florida, CRC Press.

    Google Scholar 

  13. Epenetos AA, Snook D, Durbin H et al. Limitations of radiolabeled monoclonal antibodies for localization of human neoplasms. Cancer Res 1986; 46:3183–3191.

    PubMed  CAS  Google Scholar 

  14. Goodwin DA, Meares CF, McCall M et al. Pre-targeted immunoscintigraphy of murine tumors with indium-111- labeled bifunctional haptens. J Nucl Med 1988; 29:226–234.

    PubMed  CAS  Google Scholar 

  15. LeDoussal JM, Martin M, Gautherot E et al. In vitro and In vivo targeting of radiolabeled monovalent and divalent haptens with dual specificity monoclonal antibody conjugates: enhanced divalent hapten affinity for cell-bound antibody conjugate. J Nucl Med 1989; 30:1358–1366.

    PubMed  Google Scholar 

  16. Goodwin DA. Tumor pretargeting: almost the bottom line. J Nucl Med 1995; 36:876–879.

    PubMed  CAS  Google Scholar 

  17. Hnatowich DJ, Virzi F, Rusckowski M. Investigations of avidin and biotin for imaging applications. J Nucl Med 1987; 28: 1294–1302.

    PubMed  CAS  Google Scholar 

  18. Kalofonos HP, Rusckowski M, Siebecker DA et al. Imaging of tumor in patients with indium-111-labeled biotin and streptavidin- conjugated antibodies: preliminary communication. J Nucl Med 1990; 31:1791–1796.

    PubMed  CAS  Google Scholar 

  19. Paganelli G, Malcovati M, Fazio F. 1990; Monoclonal antibody pre-targeting techniques for tumour localization: the avidin-biotin system. Nucl Med Commun 1991; 12:211–234.

    Google Scholar 

  20. Fazio F, Paganelli G. Antibody-guided scintigraphy: targeting of the ‘magic bullet’. Eur J Nucl Med 1993; 20:1138–1140.

    Article  PubMed  CAS  Google Scholar 

  21. Bauer W, Briner U, Doepfner W et al. SMS 201–995: a very potent and selective octapeptide analogue of somatostatin with prolonged action. Life Sci 1982; 31:1133–1140.

    Article  PubMed  CAS  Google Scholar 

  22. Krenning EP, Kwekkeboom DJ, Bakker WH et al. Somatostatin receptor scintigraphy with [111In-DTPA-DPhe1]- and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med 1993; 20:716–731.

    Article  PubMed  CAS  Google Scholar 

  23. Anderson CJ, Pajeau TS, Edwards WB et al. In vitro and in vivo evaluation of copper-64-octreotide conjugates. J Nucl Med 1995; 36:2315–2325.

    PubMed  CAS  Google Scholar 

  24. Grady ED, Sale W, Nicolson WP Jr. Intra-arterial radioisotopes to treat cancer. Am Surg 1960; 26:678–683.

    PubMed  CAS  Google Scholar 

  25. Nolan TR, Grady ED, Crumbley AJ et al. Intravascular particulate radioisotope therapy: clinical observations of 76 patients with advanced carcinoma treated with 90-yttrium particles. Am Surg 1969; 35:181–192.

    PubMed  CAS  Google Scholar 

  26. Mantravadi RV, Spigos DG, Tan WS et al. Intraarterial yttrium 90 in the treatment of hepatic malignancy. Radiology 1982; 142:783–786.

    PubMed  CAS  Google Scholar 

  27. Herba MJ, Illescas FF, Thirlwell MP et al. Hepatic malignancies: improved treatment with intraarterial Y -90. Radiology 1988; 169:311–314.

    PubMed  CAS  Google Scholar 

  28. Marn CS, Andrews JC, Francis IR et al. Hepatic parenchymal changes after intraarterial Y -90 therapy: CT findings. Radiology 1993; 187:125–128.

    PubMed  CAS  Google Scholar 

  29. Tian JH, Xu BX, Zhang JM et al. Ultrasound-guided internal radiotherapy using yttrium-90-g1ass microspheres for liver malignancies. J Nucl Med 1996; 37:958–963.

    PubMed  CAS  Google Scholar 

  30. Grady ED. Internal radiation therapy of hepatic cancer. Dis Colon Rectum 1979; 22:371–375.

    Article  PubMed  CAS  Google Scholar 

  31. Botet JF, New treatment approaches to liver tumors. J Nucl Med 1996; 37:963–964.

    CAS  Google Scholar 

  32. Wilder RB, DeNardo GL, DeNardo SJ. Radioimmunotherapy: recent results and future directions. J Clin Oncol 1996; 14:1383–1400.

    PubMed  CAS  Google Scholar 

  33. Goldenberg DM. Cancer Therapy with Radiolabeled Antibodies, 1995; Boca Raton, Florida, CRC Press.

    Google Scholar 

  34. Goldenberg DM, Preston DF, Primus FJ et al. Photoscan localisation of GW -39 tumours in hamsters using radiolabelled anticarcinoembryonic antigen immunoglobulin. Cancer Res 1974; 34:1–9.

    PubMed  CAS  Google Scholar 

  35. Berche C, Mach JP, Lumbroso J et al. Tomoscintigraphy for detecting gastrointestinal and medullary thyroid cancers: first clinical results using radiolabelled monoclonal antibodies against carcinoembryonic antigen. Br Med J 1982; 285:1447–1451.

    Article  CAS  Google Scholar 

  36. Delaloye B, Bischof-Delaloye A, Buchegger F et al. Detection of colorectal carcinoma by emission computerised tomography after injection of 123I labelled Fab and F (ab׳)2 fragments from monoclonal anti-carcinoembryonic antigen antibodies. J Clin Invest 1986; 77:301–311.

    Article  CAS  Google Scholar 

  37. Mach JP, Buchegger F, Bischof-Delaloye A et al. Progress in diagnostic immunoscintigraphy and first approach to radioimmunotherapy of colon carcinoma. In: Radiolabeled Monoclonal Antibodies for Imaging and Therapy, Srivastava SC (ed.), 1988: 65–78. New York, Plenum.

    Google Scholar 

  38. Ychou M, Ricard M, Lumbroso J et al. Potential contribution of 131I-labelled monoclonal anti-CEA antibodies in the treatment of liver metastases from colorectal carcinomas: pretherapeutic study with dose recovery in resected tissues. Eur J Cancer 1993; 29A:1105–1111.

    Article  CAS  Google Scholar 

  39. Thor A, Ohuchi N, Szpak CA et al. The distribution of oncofetal antigen TAG-72 defined by monoclonal antibody B72.3. Cancer Res 1986; 46:3118–3124.

    PubMed  CAS  Google Scholar 

  40. Colcher D, Esteban JM, Carrasquillo JA et al. Complementation of intracavitary and intravenous administration of a monoclonal antibody (B72.3) in patients with carcinoma. Cancer Res 1987; 47:4218–4224.

    PubMed  CAS  Google Scholar 

  41. Kostakoglu L, Divgi CR, Hilton S et al. Preselection of patients with high TAG-72 antigen expression leads to targeting of 94% of known metastatic tumor sites with monoclonal antibody l3lI-CC49. Cancer Invest 1994; 12:551–558.

    Article  PubMed  CAS  Google Scholar 

  42. Meredith RF, Khazaeli MB, Plott WE et al. Phase I trial of iodine-131-chimeric B72.3 (human IgG4) in metastatic colorectal cancer. J Nucl Med 1992; 33:23–29.

    CAS  Google Scholar 

  43. Epenetos AA, Courtenay-Luck N, Dhokia B et al. Antibodyguided irradiation of hepatic metastases using intrahepatically administered radiolabelled anti-CEA antibodies with simultaneous and reversible hepatic blood flow stasis using biodegradable strarch microspheres. Nucl Med Commun 1987; 8:1047–1058.

    Article  PubMed  CAS  Google Scholar 

  44. Paganelli G, Riva P, Deleide G et al. In vivo labelling of biotinylated monoclonal antibodies by radioactive avidin: a strategy to increase tumor radiolocalization. Int J Cancer (Suppl) 1988; 2:121–125.

    Article  CAS  Google Scholar 

  45. Paganelli G, Magnani P, Zito F et al. Three-step monoclonal antibody tumor targeting in carcinoembryonic antigen-positive patients. Cancer Res 1991; 51:5960–5966.

    PubMed  CAS  Google Scholar 

  46. Sung C, van Osdol WW. Pharmacokinetic comparison of direct antibody targeting with pretargeting protocols based on streptavidin-biotin binding. J Nucl Med 1995; 36:867–876.

    PubMed  CAS  Google Scholar 

  47. Suresh MR, Cuello AC, Milstein C. Bispecific monoclonal antibodies from hybrid hybridomas. Methods Enzymol 1986; 121:210–215.

    Article  PubMed  CAS  Google Scholar 

  48. Bos ES, Kuijpers WHA, Meesters-Winters M et al. In vitro evaluation of DNA-DNA hybridization as a two-step approach in radioimmunotherapy of cancer. Cancer Res 1994; 54:3479–3486.

    PubMed  CAS  Google Scholar 

  49. Paganelli G, Magnani P, Siccardi AG et al. Clinical application of the avidin-biotin system for tumor targeting. In: Cancer Therapy with Radiolabeled Antibodies. Goldenberg DM (ed.), 1995; 239–254. Boca Raton, Florida, CRC Press.

    Google Scholar 

  50. Paganelli G, Belloni C, Magnani P et al. Two-step tumour targetting in ovarian cancer patients using biotinylated monoclonal antibodies and radioactive streptavidin. Eur J Nucl Med 1992; 19:322–329.

    Article  PubMed  CAS  Google Scholar 

  51. Bakker WH, Krenning EP, Breeman WA et al. In vivo use of radioiodinated somatostatin analogue: dynamics, metabolism and binding to somatostatin receptor-positive tumors in man. J Nucl Med 1991; 32:1184–1189.

    PubMed  CAS  Google Scholar 

  52. Virgolini I, Angelberger P, Li S et al. In vitro and in vivo studies of three radiolabelled somatostatin analogues: 123I-octreotide (OCT), 123I-Tyr-3–0CT and l11In-DTPA-D-Phe-1-OCT. Eur J Nucl Med 1996; 23:1388–1399.

    Article  PubMed  CAS  Google Scholar 

  53. Deshpande SV, DeNardo SJ, Kukis DL et al. Yttrium-90- labeled monoclonal antibody for therapy: labeling by a new macrocyclic bifunctional chelating agent. J Nucl Med 1990; 31:473–479.

    Google Scholar 

  54. Otte A, Jermann E, Behe M et al. DOTATOC: a powerful new tool for receptor-mediated radionuclide therapy. Eur J Nucl Med 1997; 24: 792–795.

    PubMed  CAS  Google Scholar 

  55. Deftos LJ. Chromogranin A: its role in endocrine function and as an endocrine and neuroendocrine tumor marker. Endocr Rev 1991; 12:181–187.

    Article  PubMed  CAS  Google Scholar 

  56. Siccardi AG, Paganelli G, Pontiroli AE et al. In vivo imaging of chromogranin A-positive endocrine tumours by three-step monoclonal antibody targeting. Eur J Nucl Med 1996; 23: 1455–1459.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag London Limited

About this chapter

Cite this chapter

Chinol, M., Paganelli, G. (1998). The Role of Nuclear Medicine in the Treatment of Liver Metastases. In: Garden, O.J., Geraghty, J.G., Nagorney, D.M., Audisio, R.A., Stoldt, H.S. (eds) Liver Metastases. Springer, London. https://doi.org/10.1007/978-1-4471-1506-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1506-9_14

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1508-3

  • Online ISBN: 978-1-4471-1506-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics