Skip to main content

Elastic joints

  • Chapter
  • First Online:
Theory of Robot Control

Part of the book series: Communications and Control Engineering ((CCE))

Abstract

This chapter deals with modelling and control of robot manipulators with joint flexibility. The presence of such a flexibility is a common aspect in many current industrial robots. When motion transmission elements such as harmonic drives, transmission belts and long shafts are used, a dynamic time-varying displacement is introduced between the position of the driving actuator and that of the driven link.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Ailon and R. Ortega, “An observer-based set-point controller for robot manipulators with flexible joints,”Systems & Control Lettvol. 21, pp. 329–335, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  2. B. BrogUato, R. Ortega, and R. Lozano, “Global tracking controllers for flexible-joint manipulators: a comparative study,”Automaticavol. 31, pp. 941–956, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  3. G. Cesareo and R. Marino, “On the controllability properties of elastic robots,” inAnalysis and Optimization of Systems, A. Bensoussan and J.L. Lions (Eds.), Lecture Notes in Control and Information Sciences, Springer-Verlag, Berlin, D, vol. 63, pp. 352–363, 1984.

    Chapter  MATH  Google Scholar 

  4. G. Cesareo, F. Nicolò, and S. Nicosia, “DYMIR: A code for generating dynamic model of robots,”Proc. 1984 IEEE Int. Conf. on Robotics and AutomationAtlanta, GA, pp. 115–120, 1984.

    Google Scholar 

  5. A. De Luca, “Dynamic control of robots with joint elasticity,”Proc. 1988 IEEE Int. Conf on Robotics and AutomationPhiladelphia, PA, pp. 152–158, 1988.

    Google Scholar 

  6. A. De Luca, “Control properties of robot arms with joint elasticity,” inAnalysis and Control of Nonlinear Systems, C.I. Byrnes, C.F. Martin, R.E. Saeks (Eds.), North-Holland, Amsterdam, NL, pp. 61–70, 1988.

    Google Scholar 

  7. A. DeLuca, “Nonlinear regulation of robot motion,”Proc. 1st European Control Conf., Grenoble, F, pp. 1045–1050, 1991.

    Google Scholar 

  8. A. De Luca, “Decoupling and feedback linearization of robots with mixed rigid/elastic joints,”Proc. 1996 IEEE Int. Conf on Robotics and AutomationMinneapolis, MN, pp. 816–821, 1996.

    Google Scholar 

  9. A. De Luca, A. Isidori, and F. Nicolò, “Control of robot arm with elastic joints via nonlinear dynamic feedback,”Proc. 24th IEEE Conf. on Decision and Control, Ft. Lauderdale, FL, pp. 1671–1679, 1985.

    Google Scholar 

  10. A. De Luca and L. Lanari, “Robots with elastic joints are linearizable via dynamic feedback,”Proc. 34th IEEE Conf. on Decision and Control, New Orleans, LA, pp. 3895–3897, 1995.

    Google Scholar 

  11. A. De Luca and S. Panzieri, “Learning gravity compensation in robots: Rigid arms, elastic joints, flexible links,”Int. J. of Adaptive Control and Signal Processingvol. 7, pp. 417–433, 1993.

    Article  MATH  Google Scholar 

  12. A. De Luca and G. Ulivi, “Iterative learning control of robots with elastic joints,”Proc. 1992 IEEE Int. Conf. on Robotics and AutomationNice, F, pp. 1920–1926, 1992.

    Google Scholar 

  13. C. De Simone and F. Nicolò, “On the control of elastic robots by feedback decoupling,”IASTED Int. J. of Robotics and Automationvol. 1, no. 2, pp. 64–69, 1986.

    Google Scholar 

  14. M.G. Forrest-Barlach and S.M. Babcock, “Inverse dynamics position control of a compliant manipulator,”IEEE J. of Robotics and Automationvol. 3, pp. 75–83, 1987.

    Article  Google Scholar 

  15. M.C. Good, L.M. Sweet, and K.L. Strobel, “Dynamic models for control system design of integrated robot and drive systems,”ASME J. of Dynamic Systems, Measurement, and Controlvol. 107, pp. 53–59, 1985.

    Article  Google Scholar 

  16. W.M. Grimm, “Robustness analysis of nonlinear decoupling for elasticjoint robots,”IEEE Trans, on Robotics and Automationvol. 6, pp. 373–377, 1990.

    Article  Google Scholar 

  17. M.G. Hollars and R.H. Cannon, “Experiments on the end-point control of a two-link robot with elastic drives,”Proc. AIAA Guidance, Navigation and Control Conf, Williamsburg, VA, pp. 19–27, 1986.

    Google Scholar 

  18. A. Isidori, C.H. Moog, and A. De Luca, “A sufficient condition for full linearization via dynamic state feedback,”Proc. 25th IEEE Conf. on Decision and Control, Athina, GR, pp. 203–208, 1986.

    Google Scholar 

  19. K.P. Jankowski and H.A. ElMaraghy, “Dynamic control of flexible joint robots with constrained end-effector motion,”Prepr. 3rd IFAC Symp. on Robot Control, Vienna, A, pp. 345–350, 1991.

    Google Scholar 

  20. K.P. Jankowski and H. Van Brussel, “An approach to discrete inverse dynamics control of flexible-joint robots,”IEEE Trans, on Robotics and Automation, vol. 8, pp. 651–658, 1992.

    Article  MATH  Google Scholar 

  21. R. Kelly, R. Ortega, A. Ailon, and A. Loria, “Global regulation of flexible joint robots using approximate differentiation,”IEEE Trans, on Automatic Control,vol. 39, pp. 1222–1224, 1994.

    Article  MATH  Google Scholar 

  22. K. Khorasani, “Adaptive control of flexible-joint robots,”IEEE Trans, on Robotics and Automation,vol. 8, pp. 250–267, 1992.

    Article  Google Scholar 

  23. K. Khorasani and P.V. Kokotovic, “Feedback linearization of a flexible manipulator near its rigid body manifold,”Systems & Control Lett,vol. 6, pp. 187–192, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  24. H.B. Kuntze and A.H.K. Jacubasch, “Control algorithms for stiffening an elastic industrial robot,”IEEE J. of Robotics and Automation,vol. 1, pp. 71–78, 1985.

    Article  Google Scholar 

  25. L. Lanari and J.T. Wen, “Feedforward calculation in tracking control of flexible robots,”Proc. 30th IEEE Conf. on Decision and Control, Brighton, UK, pp. 1403–1408, 1991.

    Google Scholar 

  26. S.H. Lin, S. Tosunoglu, and D. Tesar, “Control of a six-degree-of-freedom flexible industrial manipulator,”IEEE Control Systems Mag.,vol. 11, no. 2, pp. 24–30, 1991.

    Article  Google Scholar 

  27. R. Lozano and B. Brogliato, “Adaptive control of robot manipulators with flexible joints,”IEEE Trans, on Automatic Control,vol. 37, pp. 174–181, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  28. R. Marino and S. Nicosia, “On the feedback control of industrial robots with elastic joints: A singular perturbation approach,” rep. R-84.01, Dipartimento di Ingegneria Elettronica, Università degli Studi di Roma “Tor Vergata”, 1984.

    Google Scholar 

  29. R. Marino and S. Nicosia, “Singular perturbation techniques in the adaptive control of elastic robots,”Prepr. 1st IFAC Symp. on Robot Control, Barcelona, E, pp. 11–16, 1985.

    Google Scholar 

  30. J.K. Mills, “Control of robotic manipulators with flexible joints during constrained motion task execution,”Proc. 28th IEEE Conf. on Decision and Control, Tampa, FL, pp. 1676–1681, 1989.

    Google Scholar 

  31. S.H. Murphy, J.T. Wen, and G.N. Saridis, “Simulation and analysis of flexibly jointed manipulators,”Proc. 29th IEEE Conf. on Decision and Control, Honolulu, HI, pp. 545–550, 1990.

    Google Scholar 

  32. S. Nicosia, F. Nicolò, and D. Lentini, “Dynamical control of industrial robots with elastic and dissipative joints,”Proc. 8th IFAC World Congr., Kyoto, J, pp. 1933–1939, 1981.

    Google Scholar 

  33. S. Nicosia and P. Tomei, “On the feedback linearization of robots with elastic joints,”Proc. 27th IEEE Conf on Decision and Control, Austin, TX, pp. 180–185, 1988.

    Google Scholar 

  34. S. Nicosia and P. Tomei, “A method for the state estimation of elastic joint robots by global position measurements,”Int. J. of Adaptive Control and Signal Processing,vol. 4, pp. 475–486, 1990.

    Article  MATH  Google Scholar 

  35. S. Nicosia and P. Tomei, “A method to design adaptive controllers for flexible joint robots,”Proc. 1992 IEEE Int. Conf on Robotics and Automation,Nice, F, pp. 701–706, 1992.

    Google Scholar 

  36. S. Nicosia and P. Tomei, “Design of global tracking controllers for flexible joint robots,”J. of Robotic Systems,vol. 10, pp. 835–846,1993.

    Article  MATH  Google Scholar 

  37. S. Nicosia and P. Tomei, “A tracking controller for flexible joint robots using only link position feedback,”IEEE Trans, on Automatic Control,vol. 40, pp. 885–890, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  38. S. Nicosia, P. Tomei, and A. Tornambè, “A nonlinear observer for elastic robots,”IEEE J. of Robotics and Automationvol. 4, pp. 45–52, 1988.

    Article  Google Scholar 

  39. E. Rivin,Mechanical Design of RobotsMcGraw-Hill, New York, NY, 1988.

    Google Scholar 

  40. H. Sira-Ramirez and M.W. Spong, “Variable structure control of flexible joint manipulators,”IASTED Int. J. of Robotics and Automationvol. 3, no. 2, pp. 57–64, 1988.

    Google Scholar 

  41. M.W. Spong, “Modeling and control of elastic joint robots,”ASME J. of Dynamic Systems, Measurement, and Controlvol. 109, pp. 310–319, 1987.

    Article  MATH  Google Scholar 

  42. M.W. Spong, “Adaptive control of flexible joint manipulators,”Systems & Control Lettvol. 13, pp. 15–21, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  43. M.W. Spong, “On the force control problem for flexible joint manipulators,”IEEE Trans, on Automatic Controlvol. 34, pp. 107–111, 1989.

    Article  MATH  Google Scholar 

  44. M.W. Spong, K. Khorasani, and P.V. Kokotovic, “An integral manifold approach to the feedback control of flexible joint robots,”IEEE J. of Robotics and Automationvol. 3, pp. 291–300, 1987.

    Article  Google Scholar 

  45. H. Springer, P. Lugner, and K. Desoyer, “Equations of motion for manipulators including dynamic effects of active elements,”Proc. 1st IFAC Symp. on Robot Control, Barcelona, E, pp. 425–430, 1985.

    Google Scholar 

  46. L.M. Sweet and M.C. Good, “Redefinition of the robot motion control problem,”IEEE Control Systems Magvol. 5, no. 3, pp. 18–24, 1985.

    Article  Google Scholar 

  47. P. Tomei, “An observer for flexible joint robots,”IEEE Trans, on Automatic Controlvol. 35, pp. 739–743, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  48. P. Tomei, “A simple PD controller for robots with elastic joints,”IEEE Trans, on Automatic Controlvol. 36, pp. 1208–1213, 1991.

    Article  MathSciNet  Google Scholar 

  49. P. Tomei, “Tracking control of flexible joint robots with uncertain parameters and disturbances,”IEEE Trans, on Automatic Controlvol. 39, pp. 1067–1072, 1994.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag London Limited

About this chapter

Cite this chapter

De Luca, A., Tomei, P. (1996). Elastic joints. In: de Wit, C.C., Siciliano, B., Bastin, G. (eds) Theory of Robot Control. Communications and Control Engineering. Springer, London. https://doi.org/10.1007/978-1-4471-1501-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1501-4_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1503-8

  • Online ISBN: 978-1-4471-1501-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics