Skip to main content

Task space control

  • Chapter
  • First Online:
Book cover Theory of Robot Control

Part of the book series: Communications and Control Engineering ((CCE))

Abstract

In the above joint space control schemes, it was assumed that the reference trajectory is available in terms of the time history of joint positions, velocities and accelerations. On the other hand, robot manipulator motions are typically specified in the task space in terms of the time history of end-effector position, velocity and acceleration. This chapter is devoted to control of rigid robot manipulators in the task space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Baillieul, “Kinematic programming alternatives for redundant manipulators,” Proc. 1985 IEEE Int. Conf. on Robotics and Automation, St. Louis, MO, pp. 722–728, 1985

    Google Scholar 

  2. T.L. Boullion and P.L. Odell, Generalized Inverse Matrices Wiley, New York, NY, 1971.

    MATH  Google Scholar 

  3. P. Chiacchio, S. Chiaverini, L. Sciavicco, and B. Siciliano, “Closed— loop inverse kinematics schemes for constrained redundant manipulators with task space augmentation and task priority strategy,” Int. J. of Robotics Research vol. 10, pp. 410–425, 1991.

    Article  Google Scholar 

  4. P. Chiacchio and B. Siciliano, “Achieving singularity robustness: An inverse kinematic solution algorithm for robot control,” in Robot Control: Theory and Applications lEE Control Engineering Series 36, K. Warwick and A. Pugh (Eds.), Peter Peregrinus, Herts, UK, pp. 149- 156, 1988.

    Google Scholar 

  5. P. Chiacchio and B. Siciliano, “A closed-loop Jacobian transpose scheme for solving the inverse kinematics of nonredundant and redundant robot wrists,” J. of Robotic Systems vol. 6, pp. 601–630, 1989

    Article  MATH  Google Scholar 

  6. S. Chiaverini, “Inverse differential kinematics of robotic manipulators at singular and near-singular configurations,” 1992 IEEE Int. Conf on Robotics and Automation — Tutorial on ’Redundancy: Performance Indices J Singularities Avoidance, and Algorithmic Implementations’ Nice, F, May 1992.

    Google Scholar 

  7. S. Chiaverini, “Estimate of the two smallest singular values of the Jacobian matrix: Application to damped least-squares inverse kinematics,” J. of Robotic Systems vol. 10, pp. 991–1008, 1993

    Article  MATH  Google Scholar 

  8. S. Chiaverini, O. Egeland, and R.K. Kanestrom, “Achieving user- defined accuracy with damped least-squares inverse kinematics,” Proc. 5th Int. Conf. on Advanced Robotics Pisa, I, pp. 672–677, 1991

    Google Scholar 

  9. S. Chiaverini, O. Egeland, J.R. Sagli, and B. Siciliano, “User-defined accuracy in the augmented task space approach for redundant manipulators,” Laboratory Robotics and Automation vol. 4, pp. 59–67, 1992

    Google Scholar 

  10. S. Chiaverini, L. Sciavicco, and B. Siciliano, “Control of robotic systems through singularities,” in Advanced Robot Control Lecture Notes in Control and Information Science, vol. 162, C. Canudas de Wit (Ed.), Springer-Verlag, Berlin, D, pp. 285–295, 1991

    MATH  Google Scholar 

  11. S. Chiaverini, B. Siciliano, and O. Egeland, “Redundancy resolution for the human-arm-like manipulator,” Robotics and Autonomous Systems vol. 8, pp. 239–250, 1991

    Article  Google Scholar 

  12. S. Chiaverini, B. Siciliano, and O. Egeland, “Review of the damped least-squares inverse kinematics with experiments on an industrial robot manipulator,” IEEE Trans, on Control Systems Technology vol. 2, pp. 123–134, 1994

    Article  Google Scholar 

  13. A. De Luca, “Zero dynamics in robotic systems,” in Nonlinear Synthesis Progress in Systems and Control Series, C.I. Byrnes and A. Kurzhanski (Eds.), Birkhauser, Boston, MA, 1991

    Google Scholar 

  14. A. De Luca and G. Oriolo, “Issues in acceleration resolution of robot redundancy,” Prepr. 3rd IFAC Symp. on Robot Control Wien, A, pp. 665–670, 1991

    Google Scholar 

  15. A. De Luca, G. Oriolo, and B. Siciliano,Robot redundancy resolution at the acceleration level,” Laboratory Robotics and Automation vol. 4, pp. 97–106, 1992

    Google Scholar 

  16. O. Egeland, “Task-space tracking with redundant manipulators,” IEEE J. of Robotics and Automation vol. 3, pp. 471–475, 1987

    Article  Google Scholar 

  17. O. Egeland, J.R. Sagli, I. Spangelo, and S. Chiaverini, “A damped least-squares solution to redundancy resolution,” Proc. 1991 IEEE Int. Conf. on Robotics and Automation Sacramento, CA, pp. 945–950, 1991

    Google Scholar 

  18. P. Hsu, J. Hauser, and S. Sastry, “Dynamic control of redundant manipulators,” J. of Robotic Systems vol. 6, pp. 133–148, 1989

    Article  MATH  Google Scholar 

  19. O. Khatib, “A unified approach for motion and force control of robot manipulators: The operational space formulation,” IEEE J. of Robotics and Automation vol. 3, pp. 43–53, 1987

    Article  Google Scholar 

  20. C.A. Klein and C.H. Huang, “Review of pseudoinverse control for use with kinematically redundant manipulators,” IEEE Trans, on Systems, Man, and Cybernetics vol. 13, pp. 245–250, 1983

    Article  Google Scholar 

  21. A. Liégeois, “Automatic supervisory control of the configuration and behavior of multibody mechanisms,” IEEE Trans, on Systems, Man, and Cybernetics vol. 7, pp. 868–871, 1977

    Article  MATH  Google Scholar 

  22. S.K. Lin, “Singularity of a nonlinear feedback control scheme for robots,” IEEE Trans, on Systems, Man, and Cybernetics vol. 19, pp. 134–139, 1989

    Article  Google Scholar 

  23. J.Y.S. Luh, M.W. Walker, and R.P.C. Paul, “Resolved-acceleration control of mechanical manipulators,” IEEE Trans, on Automatic Control vol. 25, pp. 468–474, 1980

    Article  MATH  Google Scholar 

  24. A.A. Maciejewski, “Kinetic limitations on the use of redundancy in robotic manipulators,” IEEE Trans, on Robotics and Automation vol. 7, pp. 205–210, 1991

    Article  Google Scholar 

  25. A.A. Maciejewski and C.A. Klein, “Obstacle avoidance for kinematically redundant manipulators in dynamically varying environments,” Int. J. of Robotics Research vol. 4, no. 3, pp. 109–117, 1985

    Article  Google Scholar 

  26. A.A. Maciejewski and C.A. Klein, “Numerical filtering for the operation of robotic manipulators through kinematically singular configurations,” J. of Robotic Systems vol. 5, pp. 527–552, 1988

    Article  Google Scholar 

  27. Y. Nakamura, Advanced Robotics: Redundancy and Optimization, Addison-Wesley, Reading, MA, 1991.

    Google Scholar 

  28. Y. Nakamura and H. Hanafusa, “Inverse kinematic solutions with singularity robustness for robot manipulator control,” ASME J. of Dynamic Systems, Measurement, and Control vol. 108, pp. 163–171, 1986

    Article  MATH  Google Scholar 

  29. Y. Nakamura, H. Hanafusa, and T. Yoshikawa, “Task-priority based redundancy control of robot manipulators,” Int. J. of Robotics Research vol. 6, no. 2, pp. 3–15, 1987

    Article  Google Scholar 

  30. Z. Novakovic and B. Siciliano, “A new second-order inverse kinematics solution for redundant manipulators,” in Advances in Robot Kinematics S. Stifter and J. Lenarcic (Eds.), Springer-Verlag, Wien, A, pp. 408–415, 1991

    Chapter  Google Scholar 

  31. C. Samson, M. Le Borgne, and B. Espiau, Robot Control: The Task Function Approach Oxford Engineering Science Series, vol. 22, Clarendon Press, Oxford, UK, 1991

    Google Scholar 

  32. L. Sciavicco and B. Siciliano, “Coordinate transformation: A solution algorithm for one class of robots,” IEEE Trans, on Systems, Man, and Cybernetics vol. 16, pp. 550–559, 1986

    Article  MATH  Google Scholar 

  33. L. Sciavicco and B. Siciliano, “A solution algorithm to the inverse kinematic problem for redundant manipulators,” IEEE J. of Robotics and Automation vol. 4, pp. 403–410, 1988

    Article  Google Scholar 

  34. L. Sciavicco and B. Siciliano, “The augmented task space approach for redundant manipulator control,” Proc. 2nd IFAC Symp. on Robot Control Karlsruhe, D, pp. 125–129, 1988

    Google Scholar 

  35. L. Sciavicco and B. SicilianoModeling and Control of Robot Manipulators, McGraw-Hill, New York, NY, 1996

    MATH  Google Scholar 

  36. H. Seraji, “Configuration control of redundant manipulators: Theory and implementation,” IEEE Trans, on Robotics and Automation vol. 5, pp. 472–490, 1989

    Article  Google Scholar 

  37. B. Siciliano, “A closed-loop inverse kinematic scheme for on-line joint based robot control,” Robotica vol. 8, pp. 231–243, 1990

    Article  Google Scholar 

  38. B. Siciliano, “Kinematic control of redundant robot manipulators: A tutorial,” J. of Intelligent and Robotic Systems vol. 3, pp. 201–212, 1990

    Article  Google Scholar 

  39. B. Siciliano, “Solving manipulator redundancy with the augmented task space method using the constraint Jacobian transpose,” 1992 IEEE Int. Conf. on Robotics and Automation — Tutorial on ‘Redundancy: Performance Indices, Singularities Avoidance, and Algorithmic Implementations, ’ Nice, F, May 1992

    Google Scholar 

  40. B. Siciliano and J.-J.E. Slotine, “A general framework for managing multiple tasks in highly redundant robotic systems,” Proc. 5th Int. Conf on Advanced Robotics, Pisa, I, pp. 1211–1216, 1991.

    Google Scholar 

  41. M. Takegaki and S. Arimoto, “A new feedback method for dynamic control of manipulators,” ASME J. of Dynamic Systems, Measurement, and Control vol. 102, pp. 119–125, 1981

    Article  MATH  Google Scholar 

  42. C.W. Wampler, “Manipulator inverse kinematic solutions based on vector formulations and damped least-squares methods,” IEEE Trans, on Systems, Man, and Cybernetics vol. 16, pp. 93–101, 1986.

    Article  MATH  Google Scholar 

  43. D.E. Whitney, “Resolved motion rate control of manipulators and human prostheses,” IEEE Trans, on Man-Machine Systems vol. 10, pp. 47–53, 1969.

    Article  Google Scholar 

  44. T. Yoshikawa, “Manipulability of robotic mechanisms,” Int. J. of Robotics Research vol. 4, no. 2, pp. 3–9, 1985.

    Article  MathSciNet  Google Scholar 

  45. J.S.-C. Yuan, “Closed-loop manipulator control using quaternion feedback,” IEEE J. of Robotics and Automation vol. 4, pp. 434–440, 1988.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag London Limited

About this chapter

Cite this chapter

Siciliano, B. (1996). Task space control. In: de Wit, C.C., Siciliano, B., Bastin, G. (eds) Theory of Robot Control. Communications and Control Engineering. Springer, London. https://doi.org/10.1007/978-1-4471-1501-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1501-4_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1503-8

  • Online ISBN: 978-1-4471-1501-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics