Skip to main content

The Vascular Wall and Hormonal Control of Vasomotor Function

  • Chapter
Diseases of the Arterial Wall
  • 107 Accesses

Abstract

The simplest concept of hormonal control of vascular tone would be that circulating vasoconstrictor and vasodilator factors act directly upon the smooth-muscle cells of the media after they have crossed or circumvented the endothelial cells and the fibroconnective matrix of the intima, without undergoing modification. It is, however, known that more complex biochemical processes take place in the vascular wall or on its surface and that the endothelium plays a major role in the hormonal modulation of vasomotor function, having the enzymatic equipment necessary for activating angiotensin I to become the vasoconstricting angiotensin II and for inactivating the vasodilator bradykinin. Pharmacologically, the endothelium has characterizable receptors for histamine and serotonin. It takes up vasoactive adenylated nucleotides and noradrenaline, and metabolizes certain vasoactive prostaglandins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams Brotherton AF, Hoak JC (1982) Role of Ca+ + and cyclic AMP in the regulation of the production of prostaglandin by the vascular endothelium. Proc Natl Acad Sci USA 79:495–499

    Article  Google Scholar 

  2. Alhenc-Gelas F, Cumin F, Yasui T et al. (1987) Purification and sequencing of the human kidney angiotensin-converting enzyme. (Submitted for publication)

    Google Scholar 

  3. Alhenc-Gelas F, Erdös EG (1986) The angiotensin I converting enzyme. In Robertson JIS (ed), Biochemistry of the renin system, Gower, London

    Google Scholar 

  4. Alhenc-Gelas F, Tsai SJ, Callahan KS, Campbell WB, Johnson RP (1982) Stimulation of prostaglandin formation by vasoactive mediators in cultured human endothelial cells. Prostaglandins 24:723–742

    Article  PubMed  CAS  Google Scholar 

  5. Alhenc-Gelas F, Weare JA, Johnson RL Jr, Erdös EG (1983) Measurement of human converting enzyme level by direct radioimmunoassay. J Lab Clin Med 101:83–96

    PubMed  CAS  Google Scholar 

  6. Auerbach R, Alby L, Grieves J et al. (1982) Monoclonal antibody against angiotensin converting enzyme: its use as a marker for murine, bovine and human endothelial cells. Proc Natl Acad Sci USA 79:7891–7895

    Article  PubMed  CAS  Google Scholar 

  7. Baenziger NL, Force LE, Becherer PR (1980) Histamine stimulates prostacyclin synthesis in culture human umbilical vein endothelial cells. Biochim Biophys Res Commun 92:1435–1440

    Article  CAS  Google Scholar 

  8. Bakhle YS (1968) Conversion of angiotensin I to angiotensin II by cell-free extracts of dog lung. Nature 220:919–921

    Article  PubMed  CAS  Google Scholar 

  9. Barajas L (1966) The development and ultrastructure of the juxtaglomerular cell granule. J Ultrastruct Mol Struct Res 15:400–413

    CAS  Google Scholar 

  10. Biron P, Campeau L (1971) Pulmonary and extra- pulmonary fate of angiotensin I. Rev Can Biol 30:27–34

    PubMed  CAS  Google Scholar 

  11. Biron P, Huggins CG (1968) Pulmonary activation of synthetic angiotensin I. Life Sci 7:965–970

    Article  PubMed  CAS  Google Scholar 

  12. Bouhnik J, Fehrentz JA, Galen FX et al. (1985) Immunologic identification of both plasma and human renal inactive renin as prorenin. J Clin Endocrinol Metab 60:399–401

    Article  PubMed  CAS  Google Scholar 

  13. Bruneval P., Hinglais N, Alhenc-Gelas F et al. (1986) Angiotensin I converting enzyme in human intestine and kidney. Ultrastructural immunohistochemical localization. Histochemistry 85:73–80

    Article  PubMed  CAS  Google Scholar 

  14. Bull HG, Thornberry NA, Cordes EH (1986) Purification of angiotensin-converting enzyme from rabbit lung and human plasma by affinity chromatography. J Biol Chem 260:2963–2972

    Google Scholar 

  15. Bünning P, Riordan JF (1985) The functional role of zinc in angiotensin converting enzyme: implications for the enzyme mechanism. J Org Biochem 24:183–198

    Google Scholar 

  16. Caldwell PRB, Seegal BC, Hsu KC, Das M, Soffer RL (1976) Angiotensin-converting enzyme. Vascular endothelium localization. Science 191:1050–1051

    Article  PubMed  CAS  Google Scholar 

  17. Camilleri JP, Hinglais N, Nochy D, Phat VN, Bariety J (1982) Immunohistochemistry of renin in human diseased kidney. Clin Exp Hypertens [A] 5:1179–1190

    Google Scholar 

  18. Cherry PD, Furchgott R, Zawadzki JV, Jothianandan D (1982) Role of endothelial cells in relaxation of isolated arteries of bradykinin. Proc Natl Acad Sci USA 79:2106–2110

    Article  PubMed  CAS  Google Scholar 

  19. Cicilini MA, Caldo H, Berti JD, Camargo ACM (1977) Rabbit tissue peptidases that hydrolyse the peptide hormone bradykinin. Biochem J 163:433–439

    PubMed  CAS  Google Scholar 

  20. Cohen RA, Shepherd JT, Vanhoutte PM (1983) Inhibitory role of the endothelium in the response of isolated coronary arteries to platelets. Science 221:273–274

    Article  PubMed  CAS  Google Scholar 

  21. Corvol P, Menard J (1986) Du gène de la rénine aux inhibiteurs. Ann Endocrinol (Paris) 47:156–166

    CAS  Google Scholar 

  22. Cumin F, Alhenc-Gelas F, Corvol P (1987) Binding of the specific tritiated inhibitor RU44403 to homogeneous human angiotensin converting enzyme. Direct evidence for a chloride effect in the stability of the enzyme inhibitor complex. J Hypertension (abstract) (in press)

    Google Scholar 

  23. Darby JA, Aldred P, Crawford RJ et al. (1985) Renin gene expression in vessels of the ovine renal cortex. J Hypertension 3:9–11

    Article  CAS  Google Scholar 

  24. Das M, Hartley JL, Soffer RL (1977) Serumangiotensin converting enzyme. Isolation and relationship to the pulmonary enzyme. J Biol Chem 252:1316–1319

    PubMed  CAS  Google Scholar 

  25. Das M, Soffer RL (1975) Pulmonary angiotensin converting enzyme. Structural and catalytic properties. J Biol Chem 250:6762–6768

    PubMed  CAS  Google Scholar 

  26. Das M, Soffer RL (1976) Pulmonary angiotensinconverting enzyme antienzyme antibody. Biochemistry 15:5088–5093

    Article  PubMed  CAS  Google Scholar 

  27. Davis JO, Freeman RH (1966) Mechanism regulating renin release. Physiol Rev 56:1–56

    Google Scholar 

  28. De Mey JG, Claeys M, Vanhoutte PM (1982) Endothelium dependent inhibitory effects of acetylcholine, adenosine triphosphate, thrombin and arachidonic acid in the canine femoral artery. J Pharmacol Exp Ther 222:166–173

    PubMed  Google Scholar 

  29. De Mey JG, Vanhoutte PM (1983) Anoxia and endothelium dependent reactivity of the canine femoral artery. J Physiol 335:65–74

    PubMed  Google Scholar 

  30. Di Salvo J, Peterson A, Montefusco C, Mentam (1971) Intrarenal conversion of angiotensin I to angiotensin II in the dog. Circ Res 29:398–406

    PubMed  Google Scholar 

  31. Dollin C, Savoie F, Richard J, Alhenc-Gelas F Unpublished data

    Google Scholar 

  32. Dzau VJ (1986) Significance of the vascular renin- angiotensin pathway. Hypertension 8:553–559

    PubMed  CAS  Google Scholar 

  33. Ehlers MRW, Maeder DL, Kirsch RE (1986) Rapid affinity chromatographic purification of human lung and kidney angiotensin-converting enzyme with the novel N-carboxyalkyl dipeptide inhibitor N[1(S)-car- boxy-5-aminopentyl]glycylglycine. Biochim Biophys Acta 883:361–372

    Article  PubMed  CAS  Google Scholar 

  34. Erdös EG (1977) The angiotensin converting enzyme. Fed Proc 36:1760–1768

    PubMed  Google Scholar 

  35. Ferreira SH, Vane JR (1967) The disappearance of bradykinin and eledoisin in the circulation and vascular bed of the cat. Br J Pharmacol Chemother 30:417–424

    PubMed  CAS  Google Scholar 

  36. Frangos JA, Eskin SG, MacIntyre LV (1985) Flow effects on prostaglandin production by cultured human endothelial cell. Science 227:1477–1479

    Article  PubMed  CAS  Google Scholar 

  37. Fray JCS, Park CS (1979) Influence of potassium, sodium, perfusion pressure and isoprenaline on renin release induced by anticalcium deprivation. J Physiol 292:363–372

    PubMed  CAS  Google Scholar 

  38. Freeman RH, Davis JO (1983) Factors controling renin secretion and release. In: Genest J (ed) Hypertension. McGraw-Hill, New York, pp 225–249

    Google Scholar 

  39. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376

    Article  PubMed  CAS  Google Scholar 

  40. Fyrquist F, Grönhagen-Riska, Hortling L, Forslund T, Tikkanen I, Klockars M (1983) The induction of angiotensin converting enzyme by its inhibitors. Clin Exp Hypertens [A] 5:1319–1330

    Article  Google Scholar 

  41. Galen FX, Corvol MT, Devaux C et al. (1984) Renin biosynthesis by human tumoral juxtaglomerular cells. Evidence for a renin precursor. J Clin Invest 73:1144–1155

    Article  PubMed  CAS  Google Scholar 

  42. Ganz P, Davies PF, Leopold JA, Gimbrine MA Jr, Alexander RW (1986) Short and long term interactions of endothelium and vascular smooth muscle in coculture; effects on cyclic GMP production. Proc Natl Acad Sci USA 83:3552–3556

    Article  PubMed  CAS  Google Scholar 

  43. Gardes J, Gonzalez MF, Corvol P, Menard J (1986) Influence of converting enzyme inhibition on the hormonal and renal adaptation to hyper- and hyponatremie dehydration. J Hypertens 4:189–196

    Article  PubMed  CAS  Google Scholar 

  44. Gimbrone MA, Alexander RW (1975) Angiotensin II stimulation of prostaglandin production in cultured human vascular endothelium. Science 189:219

    Article  PubMed  CAS  Google Scholar 

  45. Glance DG, Elder MG, Bio wan DL (1984) The effects of the components of the renin-angiotensin system on the isolated perfused human placenta cotyledon. Am J Obstet Gynecol 149:450–454

    PubMed  CAS  Google Scholar 

  46. Gumbiner B, Kelly RB (1982) Two distinct intracellular pathways transport secretory and membrane glycoproteins to the surface of pituitary tumor cells. Cell 28:51–59

    Article  PubMed  CAS  Google Scholar 

  47. Habib JB, Wells SL, Williams CL, Henry PD (1984) Atherosclerosis impairs endothelium dependent arterial relaxation. Circulation 70 [Suppl II]: 123 (abstract)

    Google Scholar 

  48. Harris RB, Wilson IB (1985) Sequencing of an active site peptide of angiotensin I converting enzyme containing an essential glutamic acid residue. J Biol Chem 260:2208–2211

    PubMed  CAS  Google Scholar 

  49. Hayes LW, Goguen CA, Ching SF, Slakey LL (1978) Angiotensin converting enzyme: accumulation in medium from cultured endothelial cells. Biochem Biophys Res Commun 82:1147–1153

    Article  PubMed  CAS  Google Scholar 

  50. Hong SL (1980) Effect of bradykinin and thrombin on prostaglandin synthesis in endothelial cells from calf and pig aorta and human umbilical cord vein. Thromb Res 18:787–795

    Article  PubMed  CAS  Google Scholar 

  51. Houston DS, Shepherd JT, Vanhoutte PM (1985) Adenine nucleotide, serotonin and endothelium dependent relaxations to platelets. Am J Physiol 248:4389–4395

    Google Scholar 

  52. Iwata K, Blacher R, Soffer RL, Lai CY (1983) Rabbit pulmonary angiotensin-converting enzyme: the NH2 terminal fragment with enzymatic activity and its formation from the native enzyme by NH4OH treatment. Arch Biochem Biophys 227:188–201

    Article  PubMed  CAS  Google Scholar 

  53. Johnson AR (1979) Effects of kinins on organ systems. In: Erdos EG (ed) Bradykinin, kallidin and kallikrein. Handbook of Experimental Pharmacology, vol. XXV [Suppl] pp 357–388

    Google Scholar 

  54. Johnson AR (1980) Human pulmonary endothelial cells in culture. Activities of cells from arteries and cells from veins. J Clin Invest 65:841–850

    Article  PubMed  CAS  Google Scholar 

  55. Johnson AR, Erdös EG (1977) Metabolism of vasoactive peptides by human endothelial cells in culture: angiotensin I converting enzyme (kininase II) and angiotensinase. J Clin Invest 59:684–695

    Article  PubMed  CAS  Google Scholar 

  56. Kageyama R, Ohkubo H, Nakanishi S, Murakami K (1983) Cloning and sequence analysis of cDNA for human renin precursor. Proc Natl Acad Sei USA 80:7405–7409

    Article  Google Scholar 

  57. Keeton TK, Campbell WB (1980) The pharmacological alteration of renin release. Pharmacol. Rev 32:202

    Google Scholar 

  58. Kim SJ, Hirose S, Miyazaki H et al. (1985) Identification of plasma inactive renin as prorenin with a site-directed antibody. Biochem Biophys Res Commun 126:641–645

    Article  PubMed  CAS  Google Scholar 

  59. Kirchner KA, Kotchen TA, Galla JH, Luke RG (1978) Importance of chloride for inhibition of renin by sodium chloride. Am J Physiol 235:F444-F450

    PubMed  CAS  Google Scholar 

  60. Krulewitz AH, Baur WE, Fanburg B (1984) Hormonal influence on endothelial cell angiotensin-converting enzyme activity. Am J Physiol 247:C163-C168

    PubMed  CAS  Google Scholar 

  61. Kurz A, Pfeilschifter J, Bauer C (1984) Is renin secretion governed by the calcium permeability of juxtaglomerular cell membrane? Biochem Biophys Res Commun 124:359–366

    Article  Google Scholar 

  62. Lacasse J, Ballak M, Mercure C et al. (1985) Immunocytochemical localisation of renin in juxtaglomerular cells. J Histochem Cytochem 33:323–332

    Article  PubMed  CAS  Google Scholar 

  63. Lanzillo JJ, Stevens J, Tumas J, Fanburg BL (1983) Spontaneous change of human plasma angiotensin I- converting enzyme isoelectric point. Arch Biochem Biophys 227:434–439

    Article  PubMed  CAS  Google Scholar 

  64. Lindop GBM (1987) Morphological aspects of renin synthesis, processing, storage and secretion. Kidney Int (in press)

    Google Scholar 

  65. Lockette W, Otsuka Y, Carretero OA (1986) The loss of endothelium dependent vascular relaxation in hypertension. Hypertension 8 [Suppl II]:61–66

    Google Scholar 

  66. Luscher TF, Vanhoutte PM (1986) Endothelium dependent responses to platelets and serotonin in spontaneously hypertensive rats. Hypertension 8 [Suppl II]: 55–60

    Google Scholar 

  67. Marre M, Misumi J, Raemsch KD, Corvol P, Menard J (1982) Diuretic and natriuretic effects of nifedipine on isolated perfused rat kidney. J Pharmacol Exp Ther 233:263–270

    Google Scholar 

  68. Mendelsohn FAO, Lloyd CJ, Katchel C, Funder JW (1982) Induction by glucocorticoids of angiotensin converting enzyme production from bovine endothelial cells in culture and rat lung in vivo. J Clin Invest 70:684–692

    Article  PubMed  CAS  Google Scholar 

  69. Miller VM, Vanhoutte PM (1985) Endothelium dependent contractions to arachidonic acid are mediated by products of glycooxygenase. Am J Physiol 248:H433–H437

    Google Scholar 

  70. Minuth L, Hackenthal E, Poulsen K, Rix E, Taugner R (1981) Renin immunohistochemistry of the differentiating juxtaglomerular apparatus. Anat Embryol 162:173–181

    Article  PubMed  CAS  Google Scholar 

  71. Misono KS, Chang JJ, Inagami T (1982) Amino acid sequence of mouse submaxillary gland renin. Proc Natl Acad Sei USA 79:4858–4862

    Article  CAS  Google Scholar 

  72. Moncada S, Vane JR (1979) Pharmacology and endogenous roles of prostaglandin endoperoxides, thromboxane A2 and prostaglandin. Pharmacol Rev 30:293

    Google Scholar 

  73. Mounier F, Hinglais N, Sich M et al. Ontogenesis of angiotensin I converting enzyme in human kidney. Kidney Int (in press)

    Google Scholar 

  74. Mullane KM, Moncada S (1980) Prostaglandin release and the modulation of some vasoactive hormones. Prostaglandins 20:125–149

    Article  Google Scholar 

  75. Nakache M, Gaub ME, Schreiber AB, MacConnell HM (1986) Topological and modulated distribution of surface markers on endothelial cells. Proc Natl Acad Sei USA 83:2874–2878

    Article  CAS  Google Scholar 

  76. Ng KKF, Vane JR (1967) Conversion of angiotensin I to angiotensin II. Nature 216:762–766

    Article  PubMed  CAS  Google Scholar 

  77. Nishimura K, Yashida N, Hiwada K, Ueda E, Kokubu T (1977) Purification of angiotensin I-converting enzyme from human lung. Biochim Biophys Acta 483:398–408

    PubMed  CAS  Google Scholar 

  78. Nochy D, Barres D, Camilleri JP, Bariety J, Corvol P, Menard J (1983) Abnormalities of renin-containing cells in human glomerular and vascular renal diseases. Kidney Int 23:375–379

    Article  PubMed  CAS  Google Scholar 

  79. Ody C, Seillan C, Russo-Marie F, Duval D (1983) Angiotensin II does not elicit any specific prostaglandins secretion in piglet cultured endothelial cells. Thromb Res 31:219–231

    Article  PubMed  CAS  Google Scholar 

  80. Okabe T, Fusijawa M, Yatsumoto H, Takaku F, Lanzillo JJ, Fanburg BL (1985) Familial elevation of serum angiotensin converting enzyme. Q J Med 216:55–61

    Google Scholar 

  81. Oliver JA, Sciacla RR (1984) Local generation of angiotensin II as a mechanism of regulation of peripheral vascular tone in the rat. J Clin Invest 74:1247–1251

    Article  PubMed  CAS  Google Scholar 

  82. Ondetti MA, Cushman DW (1982) Enzymes of the renin angiotensin system and their inhibitors. Ann Rev Biochem 51:283–308

    Article  PubMed  CAS  Google Scholar 

  83. Oparil S, Low J, Koerner TJ (1976) Altered angiotensin I conversion in pulmonary disease. Clin Sci Mol Med 51:538–543

    Google Scholar 

  84. Oparil S, Winternitz S, Gould V, Baerwaldt M, Szidon P (1982) Effect of hypoxia on the conversion of angiotensin I to II in the isolated perfused rat lung. Biochem Pharmacol 31:1375–1379

    Article  PubMed  CAS  Google Scholar 

  85. Orlowski M, Wilk E (1978) Concentration of angiotensin converting enzyme and angiotensin degrading enzymes in brain microvessels. Fed Proc 37:602 (abstract)

    Google Scholar 

  86. Oshima G, Geese A, Erdös EG (1974) Angiotensin I converting enzyme of the kidney cortex. Biochim Biophys Acta 350:26–37

    PubMed  CAS  Google Scholar 

  87. Panthier JJ, Foote S, Chambraud D, Strosberg D, Corvol P, Rougeon F (1982) Complete amino acid sequence and maturation of the mouse submaxillary gland renin precursor. Nature 298:90–92

    Article  PubMed  CAS  Google Scholar 

  88. Pantoliano MW, Holmquist B, Riordan JF (1984) Affinity chromatographic purification of ACE. Biochemistry 23:1037–1042

    Article  PubMed  CAS  Google Scholar 

  89. Peach MJ (1977) Renin angiotensin system: biochemistry and mechanisms of action. Physiol Rev 57:313–370

    PubMed  CAS  Google Scholar 

  90. Phat VN, Camilleri, JP, Bariety J et al. (1981) Immunohistochemical characterization of renin-containing cells in the human juxtaglomerular apparatus during embryonal and fetal development. Lab Invest 45:387–390

    PubMed  CAS  Google Scholar 

  91. Pinet F, Mizrahi J, Laboulandine I, Menard J, Corvol P (1987) Regulation of renin secretion in cultured human transfected juxtaglomerular cells. J Clin Invest (in press)

    Google Scholar 

  92. Rapoport RM, Murad F (1983) Agonist-induced endothelium dependent relaxation in rat thoracic aorta may be mediated through cGMP. Circ Res 52:352–357

    PubMed  CAS  Google Scholar 

  93. Re RN, Fallon JT, Dzau VJ, Quay S, Haber E (1982) Renin synthesis by canine aortic smooth muscle cells in culture. Life Sci 30:99–106

    Article  PubMed  CAS  Google Scholar 

  94. Reid IA (1984) Actions of angiotensin II on the brain: mechanism and physiologic role. Am J Physiol 246:F533-F543

    PubMed  CAS  Google Scholar 

  95. Ruyter JHC (1925) Über einen merwürdigen Abschnitt der Vasa afferentia in der Mauseniere. Z Zellforsch Mikrosk Anat 2:242–248

    Article  Google Scholar 

  96. Ryan US, Ryan JW, Whitaker C, Chiu A (1976) Localization of angiotensin-converting enzyme (Kininase II). Immunohistochemistry and immunofluorescence. Tissue Cell 8: 125–145

    Article  PubMed  CAS  Google Scholar 

  97. Saint-Clair DK, Presper KA, Smith PL, Stump DC, Heath EC (1986) Bovine angiotensin-converting enzyme: aminoterminal sequence analysis and preliminary characterization of a hybridiseation-selected primary translation product. Biochim Biophys Res Commun 141:968–972

    Article  Google Scholar 

  98. Sassano P, Chatellier G, Billaud E, Alhenc-Gelas F, Corvol P, Menard J (1987) Treatment of mild to moderate essential hypertension with or without the converting enzyme inhibitor Enalapril. Results of a 6 months double blind trial. Am J Med (in press)

    Google Scholar 

  99. Shapiro R, Riordan JF (1983) Critical lysine residue at the chloride binding site of angiotensin converting enzyme. Biochemistry 22:5315–5321

    Article  PubMed  CAS  Google Scholar 

  100. Shepherd JT, Vanhoutte PM (1979) The human cardiovascular system. Facts and concepts, Raven Press, New-York

    Google Scholar 

  101. Skeggs LT, Kahn JR, Shumway NP (1956) The preparation and function of the hypertensin-converting enzyme. J Exp Med 103:295–299

    Article  PubMed  CAS  Google Scholar 

  102. Skidgel RA, Erdös EG (1985) Novel activity of human angiotensin I converting enzyme: release of the NH2 and COOH terminal tripeptides from the luteinizing hormone-releasing hormone. Proc Natl Acad Sci USA 82:1025–1029

    Article  PubMed  CAS  Google Scholar 

  103. Skidgel RA, Printz MA (1978) PG 12 production by rat blood vessels: diminished prostaglandin formation in veins compared to arteries. Prostaglandins 16:1–16

    Article  PubMed  CAS  Google Scholar 

  104. Spolas EG, Folio G, Quilley J, Chander P, Margiff JC (1983) Endothelial mechanism in the vascular action of hydralazine. Hypertension 5 [suppl I]: 107–111

    Google Scholar 

  105. Stewart TA, Weare JA, Erdös EG (1981) Purification and characterization of human converting enzyme (kininase II). Peptides 2:145–152

    Article  PubMed  CAS  Google Scholar 

  106. Swales JD (1979) Arterial wall or plasma renin in hypertension. Clin Sei 56:293–298

    CAS  Google Scholar 

  107. Tang J, James MNG, Hsu IN, Jenkins JA, Blundell TL (1978) Structural evidence for gene duplication in the evolution of acid proteases. Nature 271:618–621

    Article  PubMed  CAS  Google Scholar 

  108. Taugner R, Ganten D (1982) The localization of converting enzyme in kidney vessels of the rat. Histochemistry 75:191–201

    Article  PubMed  CAS  Google Scholar 

  109. Taugner R, Hackenthal E, Nobiling R, Harlacher M, Reb G (1981) The distribution of renin in the different segments of the renin atrial tree. Immunocytochemical investigation in the mouse kidney. Histochemistry 73:75–88

    Article  PubMed  CAS  Google Scholar 

  110. Terragno DA, Crowshaw K, Terragno NA, Macgiff JC (1978) Prostaglandins synthesis by bovine mesenteric arteries and veins. Circ Res 36 [suppl l]:76

    Google Scholar 

  111. Tsai BS, Khosla MC, Peach MJ, Bumpus FM (1975) Synthesis and evaluation of Des-Asp1-angiotensin I: a precursor for Des-Asp angiotensin II (A II). J Med Chem 18:1180–1183

    Article  PubMed  CAS  Google Scholar 

  112. Unger T, Ganten D, Lang RE, Schölkens BA (1984) Is tissue converting enzyme inhibition a determinant of the antihypertensive efficacy of converting enzyme inhibitors? Studies with the two different compounds Hoe 498 and MK 421 in spontaneously hypertensive rats. J Cardiovasc Pharmacol 6:872–880

    Article  PubMed  CAS  Google Scholar 

  113. Vander AJ (1967) Control of renin release. Physiol Rev 47:359–382

    PubMed  CAS  Google Scholar 

  114. Vanhoutte PM, Rimeze TJ (1982) Role of endothelium in the control of vascular smooth muscle function. J Physiol (Paris) 78:681–686

    Google Scholar 

  115. Weare JA (1982) Activation inactivation of human angiotensin I converting enzyme (EC 3–4–15–1) following chemical modifications of amino groups near the active site. Biochem Biophys Res Commun 104:1319–1326

    Article  PubMed  CAS  Google Scholar 

  116. Winquist RJ, Bunting PB, Bskin EP, Wallace AA (1984) Decreased endothelium-dependent relaxation in New Zealand genetic hypertensive rats. J Hypertension 2:541–545

    Article  CAS  Google Scholar 

  117. Yang HYT, Erdös EG, Levin Y. (1970) A dipeptidyl carboxypeptidase that converts angiotensin I and inactivates bradykinin. Biochim Biophys Acta 214:374–376

    PubMed  CAS  Google Scholar 

  118. Yotsumoto H, Imai I, Kuzuya N, Uchimura H, Matsuzaki F (1982) Increased levels of serum-angiotensin converting enzyme activity in hyperthyroidism. Ann Int Med 96:326–328

    PubMed  CAS  Google Scholar 

  119. Zawadzki JV, Furchgott RF (1981) Fed Proc 40:689 (abstract)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alhenc-Gelas, F., Corvol, P. (1989). The Vascular Wall and Hormonal Control of Vasomotor Function. In: Camilleri, JP., Berry, C.L., Fiessinger, JN., Bariéty, J. (eds) Diseases of the Arterial Wall. Springer, London. https://doi.org/10.1007/978-1-4471-1464-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1464-2_9

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1466-6

  • Online ISBN: 978-1-4471-1464-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics