Skip to main content

Organogenesis of the Arterial Wall

  • Chapter

Abstract

It is evident that the growth of the embryo beyond its earliest stages requires the establishment of a circulatory system, to supply nutrients to and remove waste from developing tissues. The subsequent differentiation and development of the organism eventually produces a specialized cardiovascular system with distinct variations in form in different parts. In between embryonic and adult life vascular systems will have developed, involuted, been obliterated, modified their form or changed their microarchitecture, all in response to stimuli that are, with few exceptions, not well understood.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apter JT, Rabinowitz M, Cumming MT (1966) Correlation of visco-elastic properties of large arteries with microscopic structure. Circ Res 19:104–121

    CAS  Google Scholar 

  2. Averback P, Wigglesworth FW (1978) Congenital absence of the heart: observation of human funic- olopagous twinning with insertio funiculi furcata, fusion, forking, and interpositio velamentosa. Teratology 17:143–150

    Article  PubMed  CAS  Google Scholar 

  3. Berry CL (1969) Changes in the wall of the pulmonary artery after banding. J Pathol 99:29–32

    Article  PubMed  CAS  Google Scholar 

  4. Berry CL (1973) The establishment of the elastic structure of arterial bifurcation and branches, its relevance to medial defects of cerebral arteries. Atherosclerosis 18:117–127

    Article  PubMed  CAS  Google Scholar 

  5. Berry CL (1975) Congenital heart disease. In: Pomerance A, Davies MJ (eds) The pathology of the heart. Blackwell, Oxford

    Google Scholar 

  6. Berry CL (1978) Hypertension and arterial developments: long term considerations. Br Heart J 15:709–717

    Article  Google Scholar 

  7. Berry CL, Gosling RG, Laogun AA et al. (1976) Anomalous iliac compliance in children with a single umbilical artery. Br Heart J 38:510–515

    Article  PubMed  CAS  Google Scholar 

  8. Berry CL, Greenwald SE (1976) The effects of hypertension on the static mechanical properties and scler- oprotein content of the rat aorta. Cardiovasc Res 10:437

    Article  PubMed  CAS  Google Scholar 

  9. Berry CL, Greenwald SE, Menahem N (1981) Effect of Beta-aminopropionitrile on the static elastic properties and blood pressure of spontaneously hypertensive rats. Cardiovasc Res 15:373–381

    Article  PubMed  CAS  Google Scholar 

  10. Berry CL, Greenwald SE, Rivett JF (1975) Static mechanical properties of the developing and mature rat aorta. Cardiovasc Res 9:669–678

    Article  PubMed  CAS  Google Scholar 

  11. Berry CL, Looker T, Germain J (1972) Nucleic acid and scleroprotein content of the developing human aorta. J Pathol 108:265

    Article  PubMed  CAS  Google Scholar 

  12. Boon AR, Roberts DG (1976) A family study of coarctation of the aorta. J Med Genet 13:420–433

    Article  PubMed  CAS  Google Scholar 

  13. Bruins CLDC, Gittenberger-de Groot AL (1978) Flow and pressure: the mechanics of closure of the human ductus arteriosus: In: Van Mierop LHS, Oppenheimer-Dekker A, Bruins CLDC (eds) Embryology and teratology of the heart and the great arteries. Leiden University Press, pp 210–220 (Boerhaave series 19)

    Google Scholar 

  14. Bryan EM, Kohler HG (1974) The missing umbilical artery. I. Prospective study based on a maternity unit. Arch Dis Child 49:844

    Article  PubMed  CAS  Google Scholar 

  15. Busse R, Wetherer E, Bauer RD et al. (1975) The genesis of the pulse contours of the distal leg arteries in man. Pflugers Arch 360:63–79

    Article  PubMed  CAS  Google Scholar 

  16. Butler PJ, Short S, Taylor EW (1976) Factors affecting blood flow through the ventral aorta of the dogfish (Scyliorhinus canicula). Proceedings of the Physiological Society, Dec 1975. J Physiol 256:74P-76P

    Google Scholar 

  17. Charcot JM, Bouchard C (1868) Nouvelle recherches sur la pathogenese de l’hemorrhagie cerebrale. Arch Physiol 1:110

    Google Scholar 

  18. Clarke JA (1964) X-ray microscopic study of the vasa vasorum of the normal human aorta. Z Anat Entwicklungsgeschichte 124:261

    Article  CAS  Google Scholar 

  19. Clark JM, Glagov C (1985) Transmural organisation of the arterial media. The lamellar unit revisited. Atherosclerosis 5:19–34

    CAS  Google Scholar 

  20. Cole PM, Yates PO (1967) The occurrence and significance of intracerebral microaneurysms. J Pathol Bacteriol 93:393

    Article  PubMed  CAS  Google Scholar 

  21. Cox RH (1977) Carotid artery mechanics and composition in renal and DOCA hypertension in the rat. Cardiovasc Med 2:761–766

    CAS  Google Scholar 

  22. Cox RJ (1978) Passive mechanics and connective tissue composition of canine arteries. Am J Physiol 234:H535–H541

    Google Scholar 

  23. Cox RH, Jones AW, Fischer GM (1974) Carotid artery mechanics, connective tissue and electrolyte changes in puppies. Am J Physiol 227:563–568

    PubMed  CAS  Google Scholar 

  24. Crawford T (1959) Some observations on the pathogenesis and natural history of intracranial aneurysms. J Neurol Neurosurg Psychiatr 22:259

    Article  PubMed  CAS  Google Scholar 

  25. Dawes GS, Mott JC, Widdicombe JC (1955) The cardiac murmur from the patient ductus arteriosus in newborn lambs. J Physiol 128:344

    PubMed  CAS  Google Scholar 

  26. Epstein ML, Goldberg SJ, Allen HD et al. (1975) Great vessel, cardiac chamber and wall growth patterns in normal children. Circulation 51:1124–1129

    PubMed  CAS  Google Scholar 

  27. Forbus WD (1930) On the origin of miliary aneurysms of the superficial cerebral arteries. Bull J Hotz Hosp 47: 239

    Google Scholar 

  28. Greenwald SE, Berry CL (1980) The effects of alterations in scleroprotein content on the static elastic properties of the arterial wall. In: Kovach AGB, Monos E, Rubanyi G (eds) Cardiovascular physiology. Heart, peripheral circulation and methodology. Adv Physiol Sci 8:203–212

    Google Scholar 

  29. Greenwald SE, Berry CL, Haworth, SG (1982) Changes in the distensibility of the intrapulmonary arteries in the normal newborn and growing pig. Cardiovasc Res 16:716–726

    Article  PubMed  CAS  Google Scholar 

  30. Henrichs KJ, Berry CL (1979) Morphometrische Untersuchungen un Arterien bei Hypertonie-im Tierexperiment und an menschlichem Untersuchungsgut. Verh Dtsch Ges Pathol 63:684

    Google Scholar 

  31. Heymann MA, Rudolph AM (1975) Control of the ductus arteriosus. Physiol Rev 55:62

    PubMed  CAS  Google Scholar 

  32. Kuettner KE, Pauli BU (1982) Vascularity of cartilage. In: Hall BK (ed) Cartilage. Academic Press, New York, pp 281–312

    Google Scholar 

  33. Lee J, Berry CL (1978) Cerebral micro-aneurysm formation in the hypertensive rat. J Pathol 124:7–11

    Article  PubMed  CAS  Google Scholar 

  34. Leonard ME, Hutchins GM, More GW (1983) Role of the vagus nerve and its recurrent laryngeal branch in the development of the human ductus arteriosus. Am J Anat 167:313–327

    Article  PubMed  CAS  Google Scholar 

  35. Looker T, Berry CL (1972) The growth and development of the rat aorta. II. Changes in nucleic acid and scleroprotein content. J Anat 113:17

    PubMed  CAS  Google Scholar 

  36. McDonald GA (1974) Blood flow in arteries, 2nd edn. Edward Arnold, London

    Google Scholar 

  37. Milnor WR, Bergel DH, Barganier JD (1966) Hydraulic power associated with pulmonary blood flow and its relation to heart rate. Circ Res 18:467–480

    Google Scholar 

  38. Papadia F, Setti GC (1972) The lymphatic drainage system of the great blood vessels in normal, pathologic and experimental conditions. Arteno Parmese 43:133–135

    CAS  Google Scholar 

  39. Patel DJ, Vaishnav RN (1972) The rheology of large blood vessels. In: Bergel DH (ed) Cardiovascular fluid dynamics, vol 2. Academic Press, London, pp 1–64

    Google Scholar 

  40. Pesonen E (1974) Intimai cushions in vascular development coronary wall thickening in children. Atherosclerosis 20:173–187

    Article  PubMed  CAS  Google Scholar 

  41. Pesonen E., Norio R, Sarna S (1975) Thickenings in the coronary arteries in infancy as an indication of genetic factors in coronary heart disease. Circulation 51:218–225

    PubMed  CAS  Google Scholar 

  42. Reagen FP (1917) Experimental studies on the origin of vascular endothelium and of erythrocytes. Am J Anat 21:39

    Article  Google Scholar 

  43. Roach MR, Burton AC (1959) The effect of age on the elasticity of human iliac arteries. Canad J Biochem Physiol 37:557–570

    Article  PubMed  CAS  Google Scholar 

  44. Robertson JH (1960) The significance of intimai thickening in the arteries of the newborn. Arch Dis Child 35:588–590

    Article  PubMed  CAS  Google Scholar 

  45. Rodbard S (1958) Physical factors in the progression of stenotic vascular lesions. Circulation 17:410

    PubMed  CAS  Google Scholar 

  46. Rudolph AM, Heymann MA, Spitznas U (1972) Haemodynamic considerations in the development of narrowing of the aorta. Am J Cardiol 30:514

    Article  PubMed  CAS  Google Scholar 

  47. Ryan TJ, Barnhill RL (1983) Physical factors in angiogeneis. In: Development of the vascular system. Ciba Foundation Symposium 100. Pitman, London, pp 80–94

    Google Scholar 

  48. Stehbens WE (1963) Cerebral aneurysms of animals other than man. J Pathol Bacteriol 86:161

    Article  Google Scholar 

  49. Tawes RL, Aberdeen E, Berry CL (1968) The growth of an aortic anastomosis, an experimental study in piglets. J Pediatr Surg 64:1122–1132

    Google Scholar 

  50. Tawes R., Aberdeen E., Waterston DJ et al. (1969) Coarctation of the aorta in infants and children. A review of 333 operative cases including 179 Infants. Circulation [Suppl 1] 39:173

    Google Scholar 

  51. Tawes RL, Berry CL, Aberdeen E (1969) Congenital biscupid aortic valves associated with coarctation of the aorta in Children. Br Heart J 31:127–128

    Article  PubMed  Google Scholar 

  52. Taylor MG (1964) Wave travel in arteries and the design of the cardiovascular system. In: Pulsatile blood flow. McGraw-Hill, New York, pp 343–372

    Google Scholar 

  53. Taylor MG (1966) Wave transmission through an assembly of randomly branching elastic tubes. Biophys J 6:697–716

    Article  PubMed  CAS  Google Scholar 

  54. Toda T., Tsuda N, Takagi T et al. (1980) Ultrastructure of developing human ductus arteriosus. J Anat 131:25–37

    PubMed  CAS  Google Scholar 

  55. Velican C, Velican D (1977) Studies on human coronary arteries. I. Branch pads or cushions. Acta Anat 99:377–385

    Article  PubMed  CAS  Google Scholar 

  56. Velican C, Velican D (1977) Histogenetic differences between parent and daughter vessels of human coronary arteries. Atherosclerosis 26:273–287

    Article  PubMed  CAS  Google Scholar 

  57. Vlodaver MD, Kahn HA, Neufeld HN (1969) The coronary arteries in early life in three different ethnic groups. Circulation 39:541–550

    PubMed  CAS  Google Scholar 

  58. Wilens SL, Malcolm JA, Vazquez JM (1965) Experimental infarction (medial necrosis) of the dog’s aorta. Am J Pathol 47:695

    PubMed  CAS  Google Scholar 

  59. Wolinsky H, Glagov S (1967) A lammellar unit structure of aortic medial structure and function in mammals. Circ Res 20:99–111

    PubMed  CAS  Google Scholar 

  60. Wolinsky H, Glagov S (1967) Nature of species differences in the medial distribution of aortic vasa vasorum in mammals. Circ Res 20:409–421

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berry, C.L. (1989). Organogenesis of the Arterial Wall. In: Camilleri, JP., Berry, C.L., Fiessinger, JN., Bariéty, J. (eds) Diseases of the Arterial Wall. Springer, London. https://doi.org/10.1007/978-1-4471-1464-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1464-2_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1466-6

  • Online ISBN: 978-1-4471-1464-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics