Skip to main content

Newer Pharmacological Agents

  • Chapter
  • 38 Accesses

Part of the book series: The Bloomsbury Series in Clinical Science ((BLOOMSBURY))

Abstract

The interaction of platelets with the blood vessel wall has been the focus of much attention because of the probable importance of this event in the pathogenesis of thrombus formation and atherosclerosis (Ross and Glomset 1976). When therapeutic agents which altered platelet behaviour first became available, there was great optimism that it might be possible to manipulate this interaction and so alter the course of, or indeed prevent, many atherosclerosis-related conditions including coronary artery disease, hypertension, stroke and peripheral ischaemia. While there are now many very potent platelet inhibitors, their efficacy in the clinical setting has failed to fulfil theoretical promise in almost every condition. This may simply be because they are less effective in vivo than they appear in experimental models. However, so many factors may contribute to the pathogenesis of these conditions that the single-pronged approach of inhibiting platelet-vessel wall interaction may be insufficient to prevent them or alter significantly their natural history. Nevertheless, some of these agents do significantly reduce the incidence or severity of certain defined clinical problems, and further refinements of these drugs, or their combination with agents affecting other relevant systems, will lead to greater efficacy in the future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Addanizio VP, Fisher CA, Brenda AB, Jenkin BK, Strauss JF, Musial JF, Edmond LH (1985) Iloprost (ZK 36374), a stable analogue of prostacyclin, preserves platelets during simulated extra-corporeal circulation. J Thorac Cardiovasc Surg 89:926–933.

    Google Scholar 

  • Aiken JW, Shebuski RJ (1980) Comparison in anaesthetised dogs of the anti-aggregatory and haemodynamic effects of prostacyclin and a chemically stable prostacyclin analog, 6α-carba-PHI2 (car-bacyclin). Prostaglandins 19:629–643.

    PubMed  CAS  Google Scholar 

  • Aiken JW, Shebuski RJ, Miller OV, Gorman RR (1981) Endogenous prostacyclin contributes to the efficacy of thromboxane synthetase inhibitor for preventing coronary artery thrombosis. J Pharmacol Exp Ther 219:299–308.

    PubMed  CAS  Google Scholar 

  • Ambler J, Butler KD, Ku EC, Maguire ED, Smith JR, Wallis RB (1985) CGS 12970: a novel, long acting thromboxane synthetase inhibitor. Thromb Haemost 54:18 (abstr).

    Google Scholar 

  • Arén C, Fedderson K, Râdegran K. (1983) Effects of prostacyclin infusion on platelet activation and postoperative blood loss in coronary bypass. Ann Thorac Surg 36:49–54.

    PubMed  Google Scholar 

  • Belch JJF, Madhok R, Shaw B, Sturrock RD, Forbes CD (1985) CL 115, 347, a transdermally absorbed prostaglandin as a treatment for Raynaud’s phenomenon: a double blind study. Thromb Haemost 54:71 (abstr).

    Google Scholar 

  • Bemat A, Delebassée D, Maffrand JP, Tissinier A, Vallée E (1983) Role of coagulation in the antithrombotic effect of ticlopidine. Thromb Haemost 50:75 (abstr).

    Google Scholar 

  • Bertele V, Falanga A, Roncaglioni MC, Cerletti C, DeGaetano G (1982) Thromboxane synthetase inhibition results in increased platelet sensitivity to prostacyclin. Thromb Haemost 47:294.

    PubMed  CAS  Google Scholar 

  • Blackwell GJ, Radomski M, Vargas JR, Moncada S (1982) Prostacyclin prolongs the viability of washed human platelets. Biochem Biophys Acta 718:60–65.

    PubMed  CAS  Google Scholar 

  • Blättler W, Furrer K, Schriber K, Kofmehl R, Massini C (1981) Platelet proteins during and after prostacyclin therapy for lower limb ischaemia: suggestion of a rebound platelet activation. Vasa 10:261–263.

    PubMed  Google Scholar 

  • Boxer LA, Allen JM, Schmidt M, Yoder M, Baehner RL (1980) Inhibition of polymorphonuclear leukocyte adherence by prostacyclin. J Lab Clin Med 95:672–677.

    PubMed  CAS  Google Scholar 

  • Brittain RJ, Bontal L, Carter MC, et al. (1985) AH23848, a thromboxane receptor blocking drug that can clarify the pathophysiologic role of thromboxane A2. Circulation 72:1208–1218.

    PubMed  CAS  Google Scholar 

  • Bruno JJ (1983) The mechanisms of action of ticlopidine. Thromb Res [Suppl IV]:59–67.

    Google Scholar 

  • Buchanan MR (1982) The effect of platelet active drugs on platelets, vessel wall cells and their interactions: a preliminary report. In: Hirsh J, Steele P, Verrier RL (eds) Effects of platelet active drugs on the cardiovascular system (Symposium Proceedings, Denver).

    Google Scholar 

  • Buchanan MR, Hirsh J (1984) Effects of aspirin and salicylate on platelet-vessel wall interactions in rabbits. Arteriosclerosis 4:403–406.

    PubMed  CAS  Google Scholar 

  • Buchanan MR, Blajchman M, Hirsh J (1982) Inhibition of arterial thrombosis and platelet function by nafazotrom. Thromb Res 28:157–170.

    PubMed  CAS  Google Scholar 

  • Burch JW, Baenziger NL, Stanford N, Majerus PW (1978) Sensitivity of fatty acid cyclo-oxygenase from human aorta to acetylation by aspirin. Proc Natl Acad Sci USA 75:5181–5184.

    PubMed  CAS  Google Scholar 

  • Clowes AWC (1986) The role of aspirin in enhancing arterial graft potency. J Vas Surg 3:381–385.

    CAS  Google Scholar 

  • Copplestone JA, Worsley A, Sadullah S, Hamblin TJ (1986) Nafazotrom in thrombotic thrombocytopenic purpura. Lancet I:498–499.

    Google Scholar 

  • Cremer KF, Pieper JA, Joyal M, Mehta J (1984) Effect of diltiazem, dipyridamole and their combination on haemostasis. Clin Pharmacol Ther 36:641–644.

    PubMed  CAS  Google Scholar 

  • Danon A, Assouline G (1978) Inhibition of prostaglandin biosynthesis by corticosteroids requires RNA and protein synthesis. Nature 273:552–554.

    PubMed  CAS  Google Scholar 

  • Davies JA, Menys VC (1983) Effect of Dazoxiben on æplatelet-vessel wall interaction. Br J Clin Pharmacol 15:45(s)–46(s).

    Google Scholar 

  • De Castellarnau C, Vila L, Sancho MJ, Rutilant ML, et al. (1985) Effect of triflusal and its metabolite on cyclo-oxygenase. Thromb Haemost 54:242(abstr).

    Google Scholar 

  • De Caterina R, Carpeggiani C, L’Abbate A (1984) A double blind placebo controlled study of ketanserin in patients with Prinzmetal’s angina. Circulation 69:889–894.

    PubMed  Google Scholar 

  • Deckmyn H, Gresele P, Arnout J, Lemmens J, Janssens W, Vermeylen J (1983) BM 13.177, a selective blocker of platelet and vessel wall thromboxane receptors, is effective in man. Thromb Res 50:(abstr 1195).

    Google Scholar 

  • Deckmyn H, Gresele P, Van Houtte E, Nenci GG, Vermeylen J (1985) Synergism of a thromboxane synthetase inhibitor and a thromboxane receptor antagonist in reducing platelet activation. Thromb Haemost 54:114(abstr).

    Google Scholar 

  • De Gaetano G, Cerletti C, Dejana E, Latini R (1984) The ‘Aspirin Dilemma’: new points for discussion. Thromb Haemost 52:365(letter).

    PubMed  Google Scholar 

  • Dowd PM, Kovacs IB, Bland CJH, Kirby JDT (1981) Effects of prostaglandins I2 and E1 on red cell defor-mability in patients with Raynaud’s phenomenon and systemic sclerosis. Br Med J 283:350.

    CAS  Google Scholar 

  • Doyle VM, Rüegg UT (1985) Lack of evidence for voltage-dependent calcium channels on platelets. Biochem Biophys Res Commun 127:161–167.

    PubMed  CAS  Google Scholar 

  • Ernouf J, Levy-Toledano S (1984) Relationship between structure of phenothiazine analogues and their activity on platelet calcium flux. Br J Pharmacol 81:509–518.

    Google Scholar 

  • Fleming JS, Buyniski JP (1979) A potent new inhibitor of platelet aggregation and experimental thrombosis:anagrelide (BL-4162A). Thromb Res 15:373–388.

    PubMed  CAS  Google Scholar 

  • Gresele P, Zoja C, Deckmyn H, Arnout J, Vermeylen J, Verstraete M (1983) Dipyridamole inhibits platelet aggregation in whole blood. Thromb Haemost 50:852–856.

    PubMed  CAS  Google Scholar 

  • Groves HM, Kinlough-Rathbone RL, Cazenave JP, Dejana E, Richardson M, Mustard JF (1982) Effect of dipyridamole and PGI2 on rabbit platelet adherence in vitro and in vivo. J Lab Clin Med 99:548–558.

    PubMed  CAS  Google Scholar 

  • Han P, Boatwright C, Ardue NG (1983) Effect of calcium-entry blocking agent nifedipine on activation of human platelets and comparison with verapamil. Thromb Haemost 50:513–517.

    PubMed  CAS  Google Scholar 

  • Harker LA, Kadatz RA (1983) Mechanism of action of dipyridamole. Thromb Res [Suppl IV]:39–46.

    Google Scholar 

  • Harris DN, Philips MB, Michel IM, Hall SE et al. (1985) Inhibition of prostaglandin biosynthesis by SQ 28852, a 7-oxabicyclo (2.2.1) heptane analogue. Thromb Haemost 54:18(abstr).

    CAS  Google Scholar 

  • Hassan S, Pickles H, Fish A, Burke C, Warrington S, O’Grady J (1982) The cardiovascular and platelet effects of epoprostenol (prostacyclin, PGI2) are unaffected by β-adrenoceptor blockade in man. Br J Clin Pharmacol 14:369–377.

    PubMed  CAS  Google Scholar 

  • Heptinstall S, Bevan J, Cockbill SR, Hanley SP, Parry MJ (1980) Effects of selective inhibitors of thromboxane synthetase on human blood platelet behaviours. Thromb Res 20:219–230.

    PubMed  CAS  Google Scholar 

  • Herskovits E, Famulari A, Tamaroff L, Gonzalez A, Vazquez A, Dominguez R, Fraiman H, Vila J (1985) Preventative treatment of cerebral transient ischaemia: comparative randomised trial of pentoxifylline vs. conventional antiaggregants. Eur Neurol 24:73–81.

    PubMed  CAS  Google Scholar 

  • Hidaka H, Hayashi H, Kohri H, Kimura H, Hosokawa T, Igawa T, Saitoh Y (1979) Selective inhibitor of platelet cyclic adenosine monophosphate phosphodiesterase, cilostamide, inhibits platelet aggregation. J Pharmacol Exp Ther 211:26–30.

    PubMed  CAS  Google Scholar 

  • Hladovec J (1979) Is the anti-thrombotic activity of antiplatelet drugs based on protection of endothelium? Thromb Haemost 41:774–778.

    CAS  Google Scholar 

  • Honn KV (1982) Nafazotrom (Bay g 6575): inhibitor of tumor cell proliferation and metastasis. Fed Proc 41:(abstr 381).

    Google Scholar 

  • Hostetler KY, Hall LB (1982) Inhibition of kidney lysosomal phospholipases A and C by aminoglycoside antibiotics: possible mechanism of aminoglycoside toxicity. Proc Natl Acad Sci USA 79:1663–1667.

    PubMed  CAS  Google Scholar 

  • Jones RL, Peesapati V, Wilson NH (1982) Antagonism of the thromboxane sensitive contractile systems of rabbit aorta, dog saphenous vein and guinea-pig trachea by EP045, a thromboxane receptor blocker. Br J Pharmacol 76:423–428.

    PubMed  CAS  Google Scholar 

  • Kato K, Ohkawa S, Terao S, Terashita Z, Nishikawa K (1985) Thromboxane synthetase inhibitors (TXS1). Design, synthesis and evaluation of a novel series of W-pyridylalkenoic acids. J Med Chem 28:287–294.

    PubMed  CAS  Google Scholar 

  • Kaukinen S, Pessi T, Ylitalo P, Krais T, Vapaatalo H (1985) Clinical study on ZK 36374, a new stable prostacyclin analogue, for therapy of peripheral vascular disease. In: Gryglewski RJ et al. (eds) Prostacyclin clinical trials. Raven Press, New York, pp 23–28.

    Google Scholar 

  • Keller J, Kaltenecker A, Schricker KT, Neidhardt B, Hornstein OP (1985) Inhibition of platelet aggregation by a new stable prostacyclin introduced in the therapy of patients with progressive scleroderma. Arch Dermatol Res 277:323–325.

    PubMed  CAS  Google Scholar 

  • Kerry R, Scrutton MC (1983) Platelet β-adrenoceptors. Br J Pharmacol 79:681–691.

    PubMed  CAS  Google Scholar 

  • Kindness G, Williamson FB, Long WF (1980) Inhibitory effect of trifluoperazine on aggregation of human platelets. Thromb Res 17:549–554.

    PubMed  CAS  Google Scholar 

  • Kirby JDT, Lima DRA, Dowd PM, Kilfeather S, Turner P (1980) Prostacyclin increases cyclic nucleotide responsiveness of lymphocytes from patients with systemic sclerosis. Lancet II:453–455.

    Google Scholar 

  • Klee CB, Crouch TH, Richman PG (1980) Calmodulin. Annu Rev Biochem 49:489–515.

    PubMed  CAS  Google Scholar 

  • Lapetina EG, Billah MM, Cuatrecasas P (1981) The phosphatidylinositol cycle and the regulation of arachidonic acid production. Nature 292:367–369.

    PubMed  CAS  Google Scholar 

  • Lee H, Paton RC, Ruan C, Caen JP (1981) The in vitro effect of tidopidine on fibrinogen and factor VIII binding to human platelets. Thromb Haemost 46:590–592.

    PubMed  CAS  Google Scholar 

  • Levin RI, Jaffe EA, Weksler BB, Tack-Goldman K (1981) Nitroglycerin simulates synthesis of prostacyclin by cultured human endothelial cells. J Clin Invest 67:762–769.

    PubMed  CAS  Google Scholar 

  • Loew D, Vinazzer H (1976) Dose-dependent influence of acetylsalicylic acid on platelet function and plasmatic coagulation factors. Haemostasis 5:239–249.

    PubMed  CAS  Google Scholar 

  • Lubna AH, Mekki Q, Hassan S, Hedges A, Burke C, Moody SG, O’Grady J (1985) Effect of a hydantoin prostacyclin analogue BW 245 C, during oral dosing in man. Prostaglandins 29:99–111.

    Google Scholar 

  • Lucas MA (1984) Prevention of post-operative thrombosis in peripheral arteriopathies. Pentoxifylline vs conventional antiaggregants: a six month randomised follow up study. Angiology 35:443–450.

    PubMed  CAS  Google Scholar 

  • Lullman H, Wehling M (1979) The binding of drugs to different polar lipids in vitro. Biochem Pharmacol 28:3409–3415.

    Google Scholar 

  • Lumley P, Humphrey PPA (1985) The effects of AH23848, a novel thromboxane receptor blocking drug, on platelets and vascular smooth muscle. Thromb Haemost 54:74(abstr).

    Google Scholar 

  • Mackenzie AH, Scherbel AL (1980) Chloroquine and hydroxychloroquine in rheumatological therapy. Clin Rheum Dis 6:545–566.

    Google Scholar 

  • Marcus AJ (1984) Aspirin as an antithrombotic medication (editorial). New Engl J Med 309:1515–1517.

    Google Scholar 

  • Marcus AJ, Broekman MJ, Weksler BB, Tack-Goldman K et al. (1981) Interactions between stimulated platelets and endothelial cells in vitro. Philos Trans R Soc London [Biol] 294:343–353.

    CAS  Google Scholar 

  • Matzky R, Darius H, Schror K (1982) The release of prostacyclin (PGI2) by pentoxifylline from human vascular tissue. Drug Res 32:1315–1318.

    CAS  Google Scholar 

  • Metke MP, Lie JT, Fuster V, Josa M, Kaye MP (1979) Reduction of intimai thickening in canine coronary bypass vein grafts with dipyridamole and aspirin. Am J Cardiol 43:1144–1148.

    PubMed  CAS  Google Scholar 

  • Mitchell JRA (1983a) Clinical aspects of the arachidonic acid-thromboxane pathway. Br Med Bull 39:289–295.

    PubMed  CAS  Google Scholar 

  • Mitchell JRA (1983b) Prostacyclin—powerful, yes: but is it useful? Br Med J 287:1824–1826.

    CAS  Google Scholar 

  • Moncada S, Korburt R (1978) Dipyridamole and other phosphodiesterase inhibitors act as antithrombotic agents by potentiating endogenous prostacyclin. Lancet I:1286–1289.

    Google Scholar 

  • Moncada S, Gryglewski RJ, Bunting S, Vane JR (1976) An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature 263:663–665.

    PubMed  CAS  Google Scholar 

  • Moncada S, Bunting S, MuUane K, Thorogood P, Vane JR, Raz A, Needleman P (1977) Imidazole, a selective inhibitor of thromboxane synthetase. Prostaglandins 13:611–618.

    PubMed  CAS  Google Scholar 

  • Moncada S, Palmer RMJ, Higgs EA (1987) Prostacyclin and endothelium-derived relaxing factor: biological interactions and significance. In: Verstraete M et al. (eds) Thrombosis and haemostasis. Leuven University Press, pp 587–618.

    Google Scholar 

  • Muggli R, Tschopp TB, Mittelholzer E, Baumgartner HR (1986) 7-Bromo-l, 5-dihydro-3, 6-dimethyl im-idazo(2, l–6) Guinezolin-2 (3μ)-one (Ro 15–2041); a potent antithrombotic agent which selectively inhibits platelet cAMP-phosphodiesterase. J Pharmacol Exp Ther (in press).

    Google Scholar 

  • Nicolaou KC, Barnette WE, Gasic CP, Magolda RE (1977) 6, 9-Thioprostacyclin, a stable and biologically potent analogue of prostacyclin (PGI2). J Am Chem Soc 99:7736–7738.

    PubMed  CAS  Google Scholar 

  • Nishizuka Y (1984) The role of protein kinase C in cell surface signal transduction and tumour production. Nature 308:693–698.

    PubMed  CAS  Google Scholar 

  • Ogletree ML, Harris DN, Greenberg MF, Nakane M (1985) Pharmacological actions of SQ29548, a novel selective thromboxane antagonist. J Pharmacol Exp Ther 243:435–441.

    Google Scholar 

  • O’Grady J, Hedges A, Whittle BJR, Lubna AH, Mekki QA, Burke C, Moody SG, Moti MJ, Hassan S (1984) A chemically stable analogue, 9 methyl carbacyclin, with similar effects to epoprostenol (prostacyclin, PGI2) in man. Br J Clin Pharmacol 18:921–933.

    PubMed  Google Scholar 

  • Orchard MA, Ritter JM, Shepherd GL, Lewis PJ (1983) Cardiovascular and platelet effects in man of BW 245 C, a stable mimic of epoprostenol, PGI2. Br J Clin Pharmacol 15:509–511.

    PubMed  CAS  Google Scholar 

  • Packham MA (1983) Platelet function inhibitors. Thromb Haemost 50:610–619.

    CAS  Google Scholar 

  • Patrignani P, Fiblabozzi P, Patrono C (1982) Selective cumulative inhibition of platelet thromboxane production by low dose aspirin in healthy subjects. J Clin Invest 69:1366–1372.

    PubMed  CAS  Google Scholar 

  • Patscheke H, Stegmeier K (1984) Investigations on a selective non-prostanoic thromboxane antagonist, BM 13.177, in human platelets. Thromb Res 33:277–288.

    PubMed  CAS  Google Scholar 

  • Pickles H, O’Grady J (1982) Side effects occurring during administration of epoprostenol (prostacyclin, PGI2) in man. Br J Clin Pharmacol 14:177–185.

    PubMed  CAS  Google Scholar 

  • Randall MJ, Parry MJ, Hawkeswood E, Cross PE, Dickinson RP (1981) UK-37,248, a novel, selective thromboxane synthetase inhibitor with platelet anti-aggregatory and anti-thrombotic activity. Thromb Res 23:145–162.

    PubMed  CAS  Google Scholar 

  • Reele SB, Miller OV, Spillers C, Gorman RR (1983) The effects of continuous infusions of prostacyclin-Na on platelet counts, ADP induced aggregation and cyclic AMP levels in normal volunteers. Prostaglandins 26:287–300.

    PubMed  CAS  Google Scholar 

  • Roald OK, Seem E (1984) Treatment of Raynaud’s phenomenon with ketanserin in patients with connective tissue disorders. Br Med J 289:577–579.

    CAS  Google Scholar 

  • Rosenkranz B, Fischer C, Meese CO, Frolich JC (1986) Effect of salicyclic acid and acetyl salicyclic acid alone and in combination on platelet aggregation and prostenoid synthesis in man. Br J Clin Pharmacol 21:309–317.

    PubMed  CAS  Google Scholar 

  • Ross R, Glomset JA (1976) The pathogenesis of atherosclerosis: I and II. New Engl J Med 295:369–377, 420–425.

    PubMed  CAS  Google Scholar 

  • Roth GJ. Majerus PW (1975) The mechanism of effect of aspirin on human platelets. I. Acetylation of a particular fraction protein. J Clin Invest 56:624–632.

    PubMed  CAS  Google Scholar 

  • Rutsch W, Eichstädt H, Schmutzler H (1985) Effects of Iloprost in patients with acute myocardial infarction. In: Proceedings of symposium on Iloprost at IXth European congress on Cardiology, Dusseldorf, Germany, pp 43–48.

    Google Scholar 

  • Schror K, Grodzinska L, Darius H (1981a) Stimulation of coronary vascular prostacyclin and inhibition of human platelet thromboxane A2 after low dose nitroglycerin. Thromb Res 23:59–67.

    PubMed  CAS  Google Scholar 

  • Schror K, Darius H, Matzky R, Ohlendorf R (1981b) The antiplatelet and cardiovascular actions of a new carbacyclin derivative ZK 36374—equipotent to PGI2 in vitro. Naunyn Schmiedebergs Arch Pharmacol 219:243–249.

    CAS  Google Scholar 

  • Seuter F, Busse WD (1983) Mechanisms of action of Nafazotrom. Thromb Res [Suppl IV] 75–80.

    Google Scholar 

  • Shah A, Pickles H, Joshi M, Webster A, O’Grady J (1984) Effects of single oral dose administration of a hydantoin prostacyclin analogue BW 245 C in man. Proc Natl Sci Counc Repub China 34:2281–2286.

    CAS  Google Scholar 

  • Shattil SJ, Brass L (1987) Induction of the fibrinogen receptor on human platelets by intracellular mediators. J Biol Chem 262:992–1000.

    PubMed  CAS  Google Scholar 

  • Shier WJ (1980) Serum stimulation of phospholipase A2 and prostaglandin release in 3T3 cells is associated with platelet-derived growth-promoting activity. Proc Natl Acad Sci USA 77:137–141.

    PubMed  CAS  Google Scholar 

  • Siebert DJ, Bochner F, Imhoff DM, Watt S, Lloyd JV, Field J, Gabb BW (1983) Aspirin kinetics and platelet aggregation in man. Clin Pharmacol Ther 33:367–374.

    PubMed  CAS  Google Scholar 

  • Siegl AM, Daly JW, Smith JB (1982) Inhibition of aggregation and Stimulation of cyclic AMP generation in intact human platelets by the diterpene forskolin. Mol Pharmacol 21:680–687.

    PubMed  CAS  Google Scholar 

  • Sinzinger H, Horsch AK, Silberbauer K (1983) The behaviour of various platelet function tests during long-term prostacyclin infusion in patients with peripheral vascular disease. Thromb Haemost 50:885–887.

    PubMed  CAS  Google Scholar 

  • Szczeklik A, Nizankowski R, Skawinski S, Szczeklik J, Gluszko P, Gryglewski RJ (1979) Successful therapy of advanced arteriosclerosis obliterans with prostacyclin. Lancet I:1111–1114.

    Google Scholar 

  • Tansik RL, Namm DH, White HL (1978) Synthesis of prostaglandin 6-keto-F by cultured aortic smooth muscle cells and simulation of its formation in a coupled system with platelet lysates. Prostaglandins 15:399–408.

    PubMed  CAS  Google Scholar 

  • Vane JR (1971) Inhibition of prostaglandin synthesis as a mechanism of action of aspirin-like drugs. Nature (New Biol) 231:232–235.

    CAS  Google Scholar 

  • Van Neuten JM, Janssen P, Van Beck J, Yonneux R, Verbeuren D, Van Houlte PM (1981) Vascular effects of R41468, a novel antagonist of 5HT2 serotoninergic receptors. J Pharmacol Exp Ther 218:217–230.

    Google Scholar 

  • Vermeylen J, Chamone DAF, Verstraete M (1979) Stimulation of prostacyclin release from vessel wall by BAY g 6575, an anti-thrombotic compound. Lancet I:518–520.

    Google Scholar 

  • Vermeylen J, Carreras LO, Van Schaeran JV, Defreyn G, Machin SJ, Verstraete M (1981) Thromboxane synthetase inhibition as antithrombotic strategy. Lancet I:1073–1075.

    Google Scholar 

  • Warso MA, Lands WEM (1983) Lipid peroxidation in relation to prostacyclin and thromboxane physiology and pathophysiology. Br Med Bull 39:277–280.

    PubMed  CAS  Google Scholar 

  • Webster J, Dollery CT, Hensby CN (1980) Circulating prostacyclin concentrations may be increased by bendrofluazide in patients with essential hypertension. Clin Sci 59:125s–128s.

    PubMed  CAS  Google Scholar 

  • Weksler BB (1982) Prostacyclin. Prog Hemostasis Thromb 6:113–138.

    CAS  Google Scholar 

  • Weksler BB, Eldor A, Falcone D, Levin RI, Jaffe EA, Minick CR (1982) In: Herman AG et al. (eds) Cardiovascular pharmacology of the prostaglandins. Raven Press, New York, pp 137–148.

    Google Scholar 

  • Wilkinson AR, Hawker RJ, Hawker LM (1979) The influence of anti-platelet drugs on platelet survival after aortic damage or implantation of a dacron arterial prosthesis. Thromb Res 15:181–189.

    PubMed  CAS  Google Scholar 

  • Winocour PD, Kinlough-Rathbone RL, Mustard JF (1981) The effect of the phospholipase inhibitor mepacrine on platelet aggregation, the platelet release reaction and fibrinogen binding to the platelet surface. Thromb Haemost 45:257–262.

    PubMed  CAS  Google Scholar 

  • Wong P, McGiff JC (1981) Bay g 6575, an antithrombotic agent, inhibits metabolism of prostacyclin (PGI2). Circulation 64:44–55.

    Google Scholar 

  • Yardumian DA, Mackie IJ, Bull H, Goldstone AH, Machin SJ (1985) Platelet hyperaggregability occurring during prolonged continuous intravenous infusions of prostacyclin analogue ZK 36374. Br J Haematol 60:109–116.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yardumian, A., Machin, S.J. (1988). Newer Pharmacological Agents. In: Pittilo, R.M., Machin, S.J. (eds) Platelet-Vessel Wall Interactions. The Bloomsbury Series in Clinical Science. Springer, London. https://doi.org/10.1007/978-1-4471-1455-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1455-0_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1457-4

  • Online ISBN: 978-1-4471-1455-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics