Skip to main content

Endothelium and the Vessel Wall

  • Chapter
Book cover Platelet-Vessel Wall Interactions

Part of the book series: The Bloomsbury Series in Clinical Science ((BLOOMSBURY))

Abstract

The cardiovascular system consists of the heart and the blood vessels. The blood vessels are comprised of arteries, arterioles, capillaries, venules and veins and the heart itself can be considered as a specialised type of blood vessel which has become adapted for pumping blood throughout the cardiovascular system. Separate from the cardiovascular system is the lymphatic circulatory system which contains capillaries and larger vessels. This latter system is responsible for the transport of tissue fluid, or lymph as it is called, back to the circulatory system. Present within the lymph are cells, the most numerous of which are the lymphocytes. Accumulations of lymphocytes are found in lymph nodes which are associated with the lymphatic system. The components of the lymphatic system share some common features with those of the cardiovascular system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Balint A, Veress B, Jellinek H (1974) Modifications of surface coat of aortic endothelial cells in hyper-lipidaemic rats. Pathol Eur 9: 105–108.

    PubMed  CAS  Google Scholar 

  • Berendsen PB, DeFouw DO (1980) Morphometry of tubular bodies in endothelial cells in normal, stable isolated perfused, and edematous dog lungs. Anat Rec 196: 295–300.

    PubMed  CAS  Google Scholar 

  • Bernfield MR, Banerjee SD, Cohn RM (1972) Dependence of salivary epithelial morphology and branching morphogenesis upon acid mucopolysaccharide protein (proteoglycan) at the epithelial surface. J Cell Biol 52: 674–689.

    PubMed  CAS  Google Scholar 

  • Bertini F, Santolaya R (1970) A novel type of granules observed in toad endothelial cells and their relationship with blood pressure active factors. Experientia 26: 522–523.

    PubMed  CAS  Google Scholar 

  • Bevilacqua MP, Pober JS, Majeau GR, Cotran RS, Gimbrone MA (1984) Interleukin 1 (IL-1) induces biosynthesis and cell surface expression of procoagulant activity in human vascular endothelial cells. J Exp Med 160: 618–623.

    PubMed  CAS  Google Scholar 

  • Bjorkerud S, Hansson H, Bondjers G (1972) Subcellular valves and canaliculi in arterial endothelium and their equivalence to so-called stigmata. Virchows Arch [Cell Pathol] 11: 19–23.

    CAS  Google Scholar 

  • Bundgaard M (1984) The three-dimensional organization of tight junctions in a capillary endothelium revealed by serial-section electron microscopy. J Ultrastruct Res 88: 1–11.

    PubMed  CAS  Google Scholar 

  • Bundgaard M, Frokjaer-Jensen J, Crone C (1979) Endothelial plasmalemmal vesicles as elements in a system of branching invaginations from the cell surface. Proc Natl Acad Sci USA 76: 6439–6442.

    PubMed  CAS  Google Scholar 

  • Buonassisi V (1973) Sulfated mucopolysaccharide synthesis and secretion in endothelial cell cultures. Exp Cell Res 76: 363–368.

    PubMed  CAS  Google Scholar 

  • Burri PH, Weibel ER (1968) Beeinflussung einer spezifischen cytoplasmatischen Organelle von Endothel-zellen durch Adrenalin. Z Zellforsch Mikrosk Anat 88: 426.

    Google Scholar 

  • Burridge K (1981) Are stress fibres contractile? Nature 294: 691–692.

    PubMed  CAS  Google Scholar 

  • Buss H, Hollweg HG (1977) Scanning electron microscopy of blood vessels. A review. In: Scanning electron microscopy II, IITRI, Chicago, pp 467–475.

    Google Scholar 

  • Bylock A, Bjorkerud S, Brattsand R, Hansson GR, Hansson HA, Bondjers G (1977) Endothelial structure in rabbits with moderate hypercholesterolaemia. A SEM study. Acta Pathol Microbiol Scand [A] 85: 671–682.

    CAS  Google Scholar 

  • Caldwell PRB, Seegal BC, Hsu KC, Das M, Soffer RL (1976) Angiotensin-converting enzyme: vascular endothelial localization. Science 191: 1050–1051.

    PubMed  CAS  Google Scholar 

  • Camussi G, Aglietta M, Malavasi F, Tetta C, Piacibello W, Sanavio F, Bussolino F (1983) The release of platelet-activating factor from human endothelial cells in culture. J Immunol 131: 2397–2403.

    PubMed  CAS  Google Scholar 

  • Castellot JJ, Addonizio ML, Rosenberg R, Karnovsky MJ (1981) Cultured endothelial cells produce a heparin-like inhibitor of smooth muscle cell growth. J Cell Biol 90: 372–379.

    PubMed  CAS  Google Scholar 

  • Castellot JJ, Favreau LV, Karnovsky MJ, Rosenberg RD (1982) Inhibition of vascular smooth muscle cell growth by endothelial cell-derived heparin: possible role of a platelet endoglycosidase. J Biol Chem 257: 11256–11260.

    PubMed  CAS  Google Scholar 

  • Caulfield JP, Farquhar MG (1974) The permeability of glomerular capillaries to graded dextran. Identification of the basement membrane as the primary filtration barrier. J Cell Biol 63: 883–903.

    PubMed  CAS  Google Scholar 

  • Chien S, Laufer I, Handley DA (1982) Vesicle distribution in the arterial endothelium determined with ruthenium red as an extracellular marker. J Ultrastruct Res 79: 198–206.

    PubMed  CAS  Google Scholar 

  • Chisolm GM, Gainer JL, Stoner GE (1973) SEM (scanning electron microscope) studies of aortic structure. Angiologica 10: 10–14.

    PubMed  CAS  Google Scholar 

  • Christensen BC, Garbarsch C (1972) A scanning electron microscopic (SEM) study on the endothelium of the normal rabbit aorta. Angiologica 9: 15–26.

    PubMed  CAS  Google Scholar 

  • Clementi F, Palade GE (1969) Intestinal capillaries. I. Permeability to peroxidase and ferritin. J Cell Biol 41: 33–58.

    PubMed  CAS  Google Scholar 

  • Colucci M, Balconi G, Lorenzet R, Pietra A, Locati D, Donati MB, Semeraro N (1983) Cultured human endothelial cells generate tissue factor in response to endotoxin. J Clin Invest 71: 1893–1896.

    PubMed  CAS  Google Scholar 

  • Crewther WG, Dowling LM, Steinert PM, Parry DAD (1983) Structure of intermediate filaments. Int J Biol Macromolecules 5: 267–274.

    CAS  Google Scholar 

  • Curry FE, Michel CC (1980) A fiber matrix model of capillary permeability. Microvasc Res 20: 96–99.

    PubMed  CAS  Google Scholar 

  • Davies PF, Bowyer DE (1975) Scanning electron microscopy: arterial endothelial integrity after fixation at physiological pressure. Atherosclerosis 21: 463–469.

    PubMed  CAS  Google Scholar 

  • DiCorletto PE, Bowen-Pope JF (1983) Cultured endothelial cells produce a platelet-derived growth factor-like protein. Proc Natl Acad Sci USA 80: 1919–1923.

    Google Scholar 

  • DiCorletto PE, Gajdusek CM, Schwartz SM, Ross R (1983) Biochemical properties of the endothelium-derived growth factor: comparison to other growth factors. J Cell Physiol 114: 339–345.

    Google Scholar 

  • Edanaga M (1974) A SEM study on the endothelium of the vessel. I. Fine structure of endothelium of the aorta and some other arteries in normal rabbit. Arch Hist Jap 37: 1–14.

    CAS  Google Scholar 

  • Farquhar MG (1975) The primary glomerular filtration barrier—basement membrane or epithelial slits? Kidney Int 8: 197–211.

    PubMed  CAS  Google Scholar 

  • Fishman JA, Ryan GB, Karnovsky MB (1975) Endothelial regeneration in the rat corotid artery and the significance of endothelial denudation in the pathogenesis of myointimal thickening. Lab Invest 32: 339–351.

    PubMed  CAS  Google Scholar 

  • Flaherty JT, Pierce JE, Ferrans VJ, Dali JP, Tucker WK, Fry DL (1972) Endothelial nuclear patterns in the canine arterial tree with particular reference to hemodynamic events. Circ Res 30: 23–33.

    PubMed  CAS  Google Scholar 

  • Ford JW (1982) Methods for macroscopic and microscopic analysis of experimentally implanted prosthetic vascular grafts. In: Stanley JC (ed) Biologic and synthetic vascular prostheses. Grune and Stratton, New York, pp 257–276.

    Google Scholar 

  • French JE (1966) Atherosclerosis in relation to the structure and function of the arterial intima, with special reference to the endothelium. Int Rev Exp Pathol 5: 253–353.

    PubMed  CAS  Google Scholar 

  • Frokjaer-Jensen J (1980) Three-dimensional organization of plasmalemmal vesicles in endothelial cells. An analysis by serial sectioning of frog mesenteric capillaries. J Ultrastruct Res 73: 9–20.

    PubMed  CAS  Google Scholar 

  • Frokjaer-Jensen J, Bundgaard M (1979) Sessile vesicle clusters in frog mesenteric capillaries—new concept of vesicular organisation in the endothelial cell. Microvasc Res 18: 297.

    Google Scholar 

  • Fujimoto S, Yamamoto K, Takeshige Y (1975) Electron microscopy of endothelial microvilli of large arteries. Anat Rec 183: 259–266.

    PubMed  CAS  Google Scholar 

  • Gajdusek CM, DiCorleto P, Ross R, Schwartz SM (1980) An endothelial cell derived growth factor. J Cell Biol 85: 467–472.

    PubMed  CAS  Google Scholar 

  • Garbarsch C, Tranum-Jensen J, van Deurs B (1982) Scanning and transmission electron microscopy of the normal rabbit aortic endothelium after controlled perfusion fixation. Acta Anat 112: 79–91.

    PubMed  CAS  Google Scholar 

  • Gill J, Silage DA (1980) Morphometry of pinocytotic vesicles in the capillary endothelium of rabbit lungs using automated equipment. Circ Res 47: 384–391.

    Google Scholar 

  • Gotlieb AI, Spector W (1981) Migration into an in vitro experimental wound: a comparison of porcine aortic endothelial and smooth muscle cells and the effect of culture irradiation. Am J Pathol 103: 271–282.

    PubMed  CAS  Google Scholar 

  • Gregorius FK, Rand RW (1975) Scanning electron microscopic observations of common carotid artery endothelium in the rat. I. Crater artefacts. Surg Neurol 4: 252–257.

    CAS  Google Scholar 

  • Groniowski J, Biczyskowa W, Walski M (1971) Scanning electron microscopic observations on the surface of vascular endothelium. Folia Histochem Cytochem 9: 243–246.

    CAS  Google Scholar 

  • Hassell JR, Robey PG, Barrach HJ, Wilczek J, Rennard SI, Martin GR (1980) Isolation of a heparan sulfate-containing proteoglycan from basement membrane. Proc Natl Acad Sci USA 77: 4494–4498.

    PubMed  CAS  Google Scholar 

  • Haudenschild CC, Schwartz SM (1979) Endothelial regeneration. II. Restitution of endothelial continuity. Lab Invest 41: 407–418.

    PubMed  CAS  Google Scholar 

  • Haudenschild CC, Baumgartner HR, Studer A (1972) Significance of fixation procedure for preservation of arteries. Experientia 28: 828–831.

    PubMed  CAS  Google Scholar 

  • Haust MD (1987) Endothelial cilia in human atherosclerotic lesions. Virchows Arch [Pathol Anat] 410: 317–326.

    CAS  Google Scholar 

  • Hay ED, Meier S (1974) Glycosaminoglycan synthesis by embryonic inductors: neural tube, notochord and lens. J Cell Biol 62: 889–898.

    PubMed  CAS  Google Scholar 

  • Hazama F, Amano S, Ozaki T (1978) Pathological changes of cerebral vessel endothelial cells in spontaneous hypertensive rats with special reference to the role of cells in the development of hypertensive cerebrovascular lesions. Adv Neurol 20: 359–369.

    PubMed  CAS  Google Scholar 

  • Heine H, Schaeg G, Henrich H (1981) Zur Entwicklung and funktionellen Morphologie der Weibel-Palade-Bodies in Endothelzellen. Z Mikrosk Anat Forsch 4: 617–624.

    Google Scholar 

  • Herman IM, Pollard TD, Wong AJ (1982) Contractile proteins in endothelial cells. In: Fishman AP (ed) Endothelium. New York Academy of Sciences, New York, pp 50–60.

    Google Scholar 

  • Hirabayashi M, Yamamoto T (1984) An electron-microscopic study of the endothelium in mammalian bronchial microvasculature. Cell Tissue Res 236: 19–25.

    PubMed  CAS  Google Scholar 

  • Hollweg HG, Buss H (1980) Problems with the preparation of blood vessels for scanning electron microscopy. A critical review. Scanning 3: 3–14.

    Google Scholar 

  • Hormia M, Badley RA, Lehto VP, Virtanen I (1985) Actomyosin organization in stationary and migrating sheets of cultured human endothelial cells. Exp Cell Res 157: 116–126.

    PubMed  CAS  Google Scholar 

  • Howard BV, Macarak EJ, Gunson D, Kefalides NA (1976) Characterisation of the collagen synthesised by endothelial cells in culture. Proc Natl Acad Sci USA 73: 2361–2364.

    PubMed  CAS  Google Scholar 

  • Huttner I, Gabbiani G (1982) Vascular endothelium: recent advances and unanswered questions. Lab Invest 47: 409–411.

    PubMed  CAS  Google Scholar 

  • Huttner I, Peters H (1978) Heterogeneity of cell junctions in rat aortic endothelium: a freeze fracture study. J Ultrastruct Res 64: 303–308.

    PubMed  CAS  Google Scholar 

  • Huttner I, Boutet M, More RH (1973) Gap junctions in arterial endothelium. J Cell Biol 57: 247–252.

    PubMed  CAS  Google Scholar 

  • Jaffe EA, Minick CR, Adelman B, Becker CG, Nachman R (1976) Synthesis of basement membrane collagen by cultured human endothelial cells. J Exp Med 144: 209–225.

    PubMed  CAS  Google Scholar 

  • Jaffe EA, Deykin D, Salzman E, Schnippe L (1977) Endothelial cells and the biology of factor VIII. N Engl J Med 296: 377–383.

    PubMed  CAS  Google Scholar 

  • Kalnins VI, Subrahmanyan L, Gotlieb AI (1981) The reorganization of cytoskeletal fibre systems in spreading porcine endothelial cells in cultures. Eur J Cell Biol 24: 36–44.

    PubMed  CAS  Google Scholar 

  • Kanwar YS, Farquhar MG (1979) Presence of heparan sulfate in the glomerular basement membrane. Proc Natl Acad Sci USA 76: 1303–1307.

    PubMed  CAS  Google Scholar 

  • Karnovsky MJ, Shea SM (1970) Transcapillary transport by pinocytosis. Microvasc Res 2: 353–360.

    PubMed  CAS  Google Scholar 

  • Katora ME, Hollis TM (1976) Regional variation in rat aortic endothelial surface morphology: relationship to regional aortic permeability. Exp Mol Pathol 24: 23–24.

    PubMed  CAS  Google Scholar 

  • Kawamura J, Gertz SD, Sunaga T, Renneis ML, Nelson E (1974a) Scanning electron microscopic observations on the luminal surface of the rabbit common carotid artery subjected to ischaemia by arterial occlusion. Stroke 5: 765–774.

    PubMed  CAS  Google Scholar 

  • Kawamura J, Kamijye Y, Sunaga T, Nelson E (1974b) Tubular bodies in vascular endothelium of a cerebral neoplasm. Lab Invest 30: 358–365.

    PubMed  CAS  Google Scholar 

  • Kojimahara M (1977) Rod-shaped tubulated bodies in the endothelia of mesenteric arteries of hypertensive rats. Virchows Archiv [Cell Pathol] 25: 261–263.

    CAS  Google Scholar 

  • Larrue J, Rigaud M, Daret D, Demond J, Durand J, Bricaud H (1980) Prostacyclin production by cultured smooth muscle cells from atherosclerotic rabbit aorta. Nature 285: 480–482.

    PubMed  CAS  Google Scholar 

  • Larson DM, Sheridan JD (1982) Intercellular junctions and transfer of small molecules in primary endothelial cultures. J Cell Biol 92: 183–191.

    PubMed  CAS  Google Scholar 

  • Lautsch EV, Gardner C, McMillan G, Duff L (1953) Technics for the study of the normal and atherosclerotic arterial intima from its endothelial surface. Lab Invest 2: 397–407.

    PubMed  CAS  Google Scholar 

  • Luft JH (1971) Ruthenium red and violet. II. Fine structural localization in animal tissues. Anat Rec 171: 369–416.

    PubMed  CAS  Google Scholar 

  • Lyberg T, Galdal KS, Evensen SA, Prydz H (1983) Cellular cooperation in endothelial cell thromboplastin synthesis. Br J Haematol 53: 85.

    PubMed  CAS  Google Scholar 

  • MacIntyre DE, Pearson JD, Gordon JL (1978) Localisation and stimulation of prostacyclin production in vascular cells. Nature 271: 549–551.

    PubMed  CAS  Google Scholar 

  • Majno G, Underwood JM, Zand T, Joris I (1985) The significance of endothelial stomata and stigmata in the rat aorta. An electron microscopic study. Virchows Arch 408: 75–91.

    CAS  Google Scholar 

  • Matsuda H, Sugiura S (1970) Ultrastructure of “tubular body” in the endothelial cells of the ocular blood vessels. Invest Ophthalmol 9: 919–925.

    PubMed  CAS  Google Scholar 

  • Maynard JR, Dreyer BE, Stemerman MB, Pitlick FA (1977) Tissue factor coagulant activity of cultured human endothelial and smooth muscle cells and fibroblasts. Blood 50: 387–396.

    PubMed  CAS  Google Scholar 

  • Mazzone RW, Kornblau SM (1981) Pinocytotic vesicles in the endothelium of rapidly frozen rabbit lung. Microvasc Res 21: 193–211.

    PubMed  CAS  Google Scholar 

  • McGarvey KA, Reidy MA, Roach MR (1980) A quantitative study of the preparation of rabbit aortic endothelial cells for scanning electron microscopy. J Microsc 118: 229–236.

    PubMed  CAS  Google Scholar 

  • Moncada S (1982) Biological importance of prostacyclin (Eighth Gaddum Memorial Lecture, University of London Institute of Education, December 1980). Br J Pharmacol 76: 3–31.

    PubMed  CAS  Google Scholar 

  • Moncada S, Gryglewski RJ, Bunting S, Vane JR (1976a) An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature 263: 663–665.

    PubMed  CAS  Google Scholar 

  • Moncada S, Gryglewski RJ, Bunting S, Vane JR (1976b) Lipid peroxide inhibits enzyme in blood-vessel microsomes that generates from prostaglandin endoperoxides substance (prostaglandin-X) which prevents platelet aggregation. Prostaglandins 12: 715–737.

    PubMed  CAS  Google Scholar 

  • Moncada S, Herman AG, Higgs EA, Vane JR (1977) Differential formation of prostacyclin (PGX or PGI2) by layers of the arterial wall: an explanation for the anti-thrombotic properties of vascular endothelium. Thromb Res 11: 323–344.

    PubMed  CAS  Google Scholar 

  • Moseley H, Connell RS, Krippaehne WW (1974) Healing of canine aorta after endarterectomy. Ann Surg 180: 329–335.

    PubMed  CAS  Google Scholar 

  • Neild G (1983) Mechanisms and models of endothelial injury. In: Bertani T, Remuzzi G (eds) Glomerular injury 300 years after Morgagni. Wichtig Editore, London, pp 139–162.

    Google Scholar 

  • Okadome K, Tanaka K (1986) Pathophysiological effects of fibrin on arterial endothelial cells in vivo: an electron microscopic study. Exp Mol Pathol 44: 364–373.

    PubMed  CAS  Google Scholar 

  • Osborn M, Weber K (1982) Intermediate filaments: cell-type specific markers in differentiation and pathology. Cell 31: 303–306.

    PubMed  CAS  Google Scholar 

  • Palade GE (1960) Transport in quanta across the endothelium of blood capillaries. Anat Rec 136: 254.

    Google Scholar 

  • Palade GE, Bruns RR (1968) Structural modulations of plasmalemmal vesicles. J Cell Biol 37: 633–649.

    PubMed  CAS  Google Scholar 

  • Peine CJ, Low FN (1975) Scanning electron microscopy of cardiac endothelium of the dog. Am J Anat 142: 137–157.

    PubMed  CAS  Google Scholar 

  • Pittilo RM, Mackie IJ, Rowles PM, Machin SJ, Woolf N (1982) Effects of cigarette smoking on the ultra-structure of rat thoracic aorta and its ability to produce prostacyclin. Thromb Haemost 48: 173–176.

    PubMed  CAS  Google Scholar 

  • Prescott SM, Zimmerman GA, McIntyre TM (1984) Human endothelial cells in tissue culture produce platelet-activating factor (1-alkyl-2-acetyl-sn-glycero-3-phosphocholine) when stimulated with thrombin. Proc Natl Acad Sci USA 81: 3534–3538.

    PubMed  CAS  Google Scholar 

  • Rand JJ, Sussman II, Gordon RE, Chu SV, Solomon V (1980) Localisation of factor VIII related antigen in human vascular subendothelium. Blood 55: 752–756.

    PubMed  CAS  Google Scholar 

  • Reidy MA (1985) Biology of disease. A reassessment of endothelial injury and arterial lesion formation. Lab Invest 53: 513–520.

    PubMed  CAS  Google Scholar 

  • Reidy MA, Langille BL (1980) The effect of local blood flow patterns on endothelial cell morphology. Exp Mol Pathol 32: 276–289.

    PubMed  CAS  Google Scholar 

  • Reidy MA, Schwartz SM (1980) Developments in the study of endothelial cells by scanning electron microscopy. Artery 8: 236–243.

    PubMed  CAS  Google Scholar 

  • Reidy MA, Schwartz SM (1981a) En face morphology of endothelial junctions. J Ultrastruct Res 75: 363–367.

    PubMed  CAS  Google Scholar 

  • Reidy MA, Schwartz SM (1981b) Endothelial regeneration. III. Time course of intimai changes after small defined injury to rat aortic endothelium. Lab Invest 44: 301–308.

    PubMed  CAS  Google Scholar 

  • Reidy MA, Schwartz SM (1983) Endothelial injury and regeneration. IV. Endotoxin: a nondenuding injury to aortic endothelium. Lab Invest 48: 25–34.

    PubMed  CAS  Google Scholar 

  • Reidy MA, Silver M (1985) Endothelial regeneration. VII. Lack of intimai proliferation after defined injury to rat aorta. Am J Pathol 118: 173–177.

    PubMed  CAS  Google Scholar 

  • Reidy MA, Clowes AW, Schwartz SM (1983) Endothelial regeneration. V. Inhibition of endothelial re-growth in arteries of rat and rabbit. Lab Invest 49: 569–575.

    PubMed  CAS  Google Scholar 

  • Reidy MA, Chao SS, Kirkman TR, Clowes AW (1986) Endothelial regeneration. VI. Chronic nondenuding injury in baboon vascular grafts. Am J Pathol 123: 432–439.

    PubMed  CAS  Google Scholar 

  • Renkin EM, Curry FE (1982) Endothelial permeability: pathways and modulations. Ann NY Acad Sci 401: 248–259.

    PubMed  CAS  Google Scholar 

  • Roach MR (1977) The effects of bifurcations and stenoses on arterial disease. In: Hwang and Normann (eds) Cardiovascular flow dynamics and measurements. University Park Press, Baltimore.

    Google Scholar 

  • Rogers KA, Kalnins VI (1983a) Comparison of the cytoskeleton in aortic endothelial cells in situ and in vitro. Lab Invest 49: 650–654.

    PubMed  CAS  Google Scholar 

  • Rogers KA, Kalnins VI (1983b) A method for examining the endothelial cytoskeleton in situ using immunofluorescence. J Histochem Cytochem 31: 1317–1320.

    PubMed  CAS  Google Scholar 

  • Ross R (1986) The pathogenesis of atherosclerosis—an update. N Engl J Med 314: 488–500.

    PubMed  CAS  Google Scholar 

  • Ross R, Glomset JA (1976a) The pathogenesis of atherosclerosis. Engl J Med 295: 369–377.

    CAS  Google Scholar 

  • Ross R, Glomset JA (1976b) The pathogenesis of atherosclerosis. Eng J Med 295: 420–425.

    CAS  Google Scholar 

  • Schneeberger EE, Karnovsky MJ (1976) Substructure of intercellular junctions in freeze-fractured alveolar capillary membranes of mouse lung. Circ Res 38: 404–411.

    PubMed  CAS  Google Scholar 

  • Schwartz SM, Benditt EP (1973) Cell replication in the aortic endothelium. A new method for study of the problem. Lab Invest 28: 699–707.

    PubMed  CAS  Google Scholar 

  • Schwartz SM, Haudenschild CC, Eddy EM (1978) Endothelial regeneration. I. Quantitative analysis of initial stages of endothelial regeneration in rat aortic intima. Lab Invest 38: 568–580.

    PubMed  CAS  Google Scholar 

  • Sedar AW, Silver MJ, Ingerman-Wojenski CM (1983) Backscattered electron imaging to visualise arterial endothelial detachment in the scanning electron microscope. Scanning Electron Microsc 2: 969–974.

    Google Scholar 

  • Sharma HM, Geer JC (1977) Experimental aortic lesions of acute serum sickness in rabbits. Am J Pathol 88: 255–266.

    PubMed  CAS  Google Scholar 

  • Shimamoto T (1969) An introduction to the investigation of atherogenesis, thrombogenesis and pyridinol-carbamate treatment. Visualisation of the transendothelial passage through intercellular junctions and discovery of endothelial folds and intercellular bridges of vascular endothelium. In: Shimamoto T, Numano F (eds) Atherogenesis. Excerpta Medica Foundation, Amsterdam.

    Google Scholar 

  • Shimamoto T, Yamashita Y, Sunaga T (1969) Scanning electron microscopic observation of endothelial surface of heart and blood vessels. Proc Jap Acad 45: 507–511.

    Google Scholar 

  • Shirahama T, Cohen AS (1972) The role of mucopolysaccharides in the vesicle architecture and endothelial transport. An electron microscope study of myocardial blood vessels. J Cell Biol 52: 198–206.

    PubMed  CAS  Google Scholar 

  • Silkworth JB, Stehbens WE (1975) The shape of endothelial cells in en face preparations of rabbit blood vessels. Angiology 26: 474–487.

    Google Scholar 

  • Simionescu M (1979) The microvascular endothelium: segmental differentiations, transcytosis, selective distribution of anionic sites. In: Weissman G, Samuelson B, Paoletti R (eds) Advances in inflammation research, vol 1. Raven Press, New York, pp 61–71.

    Google Scholar 

  • Simionescu M, Siminionescu NS, Palade GE (1972) Biochemically differentiated microdomains of the cell surface of capillary endothelium. Ann NY Acad Sci 401: 9–24.

    Google Scholar 

  • Simionescu M, Simionescu N, Palade GE (1974) Morphometric data on the endothelium of blood capillaries. J Cell Biol 60: 128–152.

    PubMed  CAS  Google Scholar 

  • Simionescu M, Simionescu N, Palade GE (1975a) Segmental differentiations of cell junctions in the vascular endothelium: the microvasculature. J Cell Biol 67: 863–885.

    PubMed  CAS  Google Scholar 

  • Simionescu M, Simionescu N, Palade GE (1976a) Segmental differentiations of cell junctions in the vascular endothelium: arteries and veins. J Cell Biol 68: 705–723.

    PubMed  CAS  Google Scholar 

  • Simionescu M, Simionescu N, Gilbert JE, Palade GE (1981a) Differentiated microdomains on the luminal surface of the capillary endothelium. II. Partial characterisation of their anionic sites. J Cell Biol 90: 614–620.

    PubMed  CAS  Google Scholar 

  • Simionescu M, Simionescu N, Palade GE (1982) Biochemically differentiated microdomains of the cell surface of capillary endothelium. Ann NY Acad Sci 401: 9–24.

    PubMed  CAS  Google Scholar 

  • Simionescu N, Simionescu M, Palade GE (1975b) Permeability of muscle capillaries to small hemipep-tides. Evidence for the existence of patent transendothelial channels. J Cell Biol 64: 586–607.

    PubMed  CAS  Google Scholar 

  • Simionescu N, Simionescu M, Palade GE (1976b) Recent studies on vascular endothelium. Ann NY Acad Sci 275: 64–75.

    PubMed  CAS  Google Scholar 

  • Simionescu N, Simionescu M, Palade GE (1981b) Differentiated microdomains on the luminal surface of the capillary endothelium. I. Preferential distribution of the anionic sites. J Cell Biol 90: 605–613.

    PubMed  CAS  Google Scholar 

  • Smith DW, Carnes WH (1973) Biosynthesis of soluble elastin by pig aortic tissue in vitro. J Biol Chem 248: 8157–8161.

    PubMed  CAS  Google Scholar 

  • Smith U, Ryan IW (1971) Endothelial projections as revealed by scanning electron microscopy. Science 173: 925–927.

    PubMed  CAS  Google Scholar 

  • Steinert PM, Jones JCR, Goldman RD (1984) Intermediate filaments. J Cell Biol 99: 225–275.

    Google Scholar 

  • Stenman S, Vaheri A (1978) Distribution of a major connective tissue protein, fibronectin, in normal human tissues. J Exp Med 147: 1054–1064.

    PubMed  CAS  Google Scholar 

  • Still WJS, Dennison SM (1967) Reaction of the arterial intima of the rabbit to trauma and hyperlipidemia. Exp Mol Pathol 6: 245–253.

    PubMed  CAS  Google Scholar 

  • Sunaga T, Yamashita Y, Shimamoto T (1969) The intercellular bridge of vascular endothelium. Proc Jap Acad 45: 627–631.

    Google Scholar 

  • Sussman II, Rand J (1982) Subendothelial deposition of von Willebrand’s factor requires the presence of endothelial cells. J Lab Clin Med 100: 526–532.

    PubMed  CAS  Google Scholar 

  • Svendsen E, Jorgensen L (1978) Focal “spontaneous” alterations and loss of endothelial cells in rabbit aorta. Acta Pathol Microbiol Scand [A] 86: 1–13.

    CAS  Google Scholar 

  • Thomsen HK, Kjeldsen K (1978) The surface structure of the thoracic aorta in normal rabbits. Scanning Electron Microsc 2: 791–796.

    Google Scholar 

  • Thorgeirsson G, Robertson AL (1978) The vascular endothelium—pathobiologic significance. A review. Am J Pathol 93: 803–848.

    CAS  Google Scholar 

  • Timpl R, Rohde H, Robey PG, Rennard SI, Foidart JM, Martin GR (1979) Laminin—a glycoprotein from basement membranes. J Biol Chem 254: 9933–9937.

    PubMed  CAS  Google Scholar 

  • Tokunaga J, Osaka M, Fujita T (1973) Endothelial surface of rabbit aorta as observed by scanning electron microscopy. Arch Histol Jap 36: 129–141.

    PubMed  CAS  Google Scholar 

  • Trillo AR, Pritchard RW (1979) Early endothelial changes in experimental primate atherosclerosis. Lab Invest 41: 294–299.

    PubMed  CAS  Google Scholar 

  • Vasmant D, Maurice M, Feldman G (1984) Cytoskeleton ultrastructure of podocytes and glomerular endothelial cells in man and in the rat. Anat Rec 210: 17–24.

    PubMed  CAS  Google Scholar 

  • Virtanen J, Uusitalo H, Palkama A, Kaufman H (1984) The effect of fixation on corneal endothelial cell dimensions and morphology in scanning electron microscopy. Acta Ophthalmol 62: 577–578.

    CAS  Google Scholar 

  • Wagner RC, Robinson CS (1984) High-voltage electron microscopy of capillary endothelial vesicles. Mic-rovasc Res 28: 197–205.

    CAS  Google Scholar 

  • Warhol MJ, Sweet JM (1984) The ultrastructural localisation of von Willebrand factor in endothelial cells. Am J Pathol 117: 310–315.

    PubMed  CAS  Google Scholar 

  • Weber G, Tosi P (1971) Observations with the scanning electron microscope on the development of cholesterol aortic atherosclerosis in the rabbit. Pathol Eur 6: 407–414.

    PubMed  CAS  Google Scholar 

  • Weibel ER, Palade GE (1964) New cytoplasmic components in arterial endothelium. J Cell Biol 23: 101–112.

    PubMed  CAS  Google Scholar 

  • Weksler BB, Marcus AJ, Jaffe EA (1977) Synthesis of prostaglandin-I2 (prostacyclin) by cultured human and bovine endothelial cells. Proc Natl Acad Sci USA 74: 3922–3926.

    PubMed  CAS  Google Scholar 

  • White GE, Gimbrone MA, Fujiwara K (1983) Factors influencing the expression of stress fibers in vascular endothelial cells. J Cell Biol 97: 416–424.

    PubMed  CAS  Google Scholar 

  • Wong AJ, Pollard TD, Herman IM (1983) Actin filament stress fibres in vascular endothelial cells in vivo. Science 219: 867–869.

    PubMed  CAS  Google Scholar 

  • Woolf N (1982) Pathology of atherosclerosis. Butterworth, London.

    Google Scholar 

  • Yee AG, Revel JP (1975) Endothelial cell junctions. J Cell Biol 66: 200–204.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pittilo, R.M. (1988). Endothelium and the Vessel Wall. In: Pittilo, R.M., Machin, S.J. (eds) Platelet-Vessel Wall Interactions. The Bloomsbury Series in Clinical Science. Springer, London. https://doi.org/10.1007/978-1-4471-1455-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1455-0_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1457-4

  • Online ISBN: 978-1-4471-1455-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics