Skip to main content

The Functions of Efferent Nerves to the Lower Urinary Tract

  • Chapter
The Physiology of the Lower Urinary Tract

Abstract

The purpose of this chapter is to review the peripheral and central effects of excitation of efferent neurons innervating the lower urinary tract. The anatomy was reviewed in Section 1, and our main concern in this chapter will be with the physiology and pharmacology of ganglionic and/or neuroeffector transmission in sympathetic, parasympathetic and somatic efferent pathways. There are many excellent reviews on this subject and the reader may find monographs by Appenzeller (1982), Gabella (1976), Nilsson (1983) and Johnson and Spalding (1974), and reviews by Burnstock (1981, 1986), Morrison (1982), de Groat et al. (1981), de Groat (1975) and Andersson and Sjögren (1982) helpful for further study. The physiology of smooth muscle and of neuromuscular transmission in the bladder is dealt with in Chapter 6. However, the starting point of this chapter will deal with an effect which appears to be mediated by parasympathetic efferent neurons within the central part of their course, viz. the phenomenon of recurrent inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akasu T, Gallagher JP, Hirai K, Shinnick-Gallagher P (1986) Vasoactive intestinal polypeptide depolarisations at cat bladder parasympathetic ganglia. J Physiol 374:457–474.

    PubMed  CAS  Google Scholar 

  • Ambache N, Zar MA (1970) Non-cholinergic transmission by postganglionic motor neurones in the mammalian bladder. J Physiol 210:761–784.

    PubMed  CAS  Google Scholar 

  • Andersson KE, Sjögren C (1982) Aspects of the physiology and pharmacology of the bladder and urethra. Prog Neurobiol 19:71–89.

    Article  PubMed  CAS  Google Scholar 

  • Andersson KE, Husted S, Sjogren C (1980) Contribution of prostaglandins to the adenosine triphosphate induced contraction of the rabbit urinary bladder. Br J Pharmacol 70:443–452.

    PubMed  CAS  Google Scholar 

  • Andersson PO, Bloom SR, Mattiasson A, Uvelius B (1985) Changes in the vascular resistance in the feline urinary bladder in response to bladder filling. J Urol 134:1041–1046.

    PubMed  CAS  Google Scholar 

  • Appenzeller O (1982) The autonomic nervous system: an introduction to basic and clinical concepts, 3rd edn. Elsevier, New York, p 524.

    Google Scholar 

  • Baron R, Janig W, McLachlan EM (1985) The afferent and sympathetic components of the lumbar outflow to the colon and pelvic organs in the cat. II. The lumbar splanchnic nerves. J Comp Neurol 238:147–157.

    Article  PubMed  CAS  Google Scholar 

  • Blackman JG, Crowcroft PJ, Devine EE, Holman ME, Yone-mura K (1969) Transmission from preganglionic fibres in the hypogastric nerve to peripheral ganglia of male guinea pigs. J Physiol 201:723–743.

    PubMed  CAS  Google Scholar 

  • Blaivas JG, Labin KB, Bauer SB, Retik AB (1977) A new approach to electromyography of the external urethral sphincter. J Urol 117:773–777.

    PubMed  CAS  Google Scholar 

  • Bors E, Comarr AE (1971) Neurological urology. Karger, New York.

    Google Scholar 

  • Brindley GS, Craggs MD (1976). The effect of atropine on the urinary bladder of the baboon and of man. J Physiol 256:55P.

    PubMed  CAS  Google Scholar 

  • Brindley GS, Rushton DN, Craggs MD (1974) The pressure exerted by the external sphincter of the urethra when its motor nerve fibres are stimulated electrically. Br J Urol 46:453–462.

    Article  PubMed  CAS  Google Scholar 

  • Burke RE (1981) Motor units: anatomy, physiology and functional organisation. In: Brookhart JM, Mountcastle VB (eds) Handbook of Physiology. Section 1, The nervous system, vol II, part 1. Waverley, Baltimore, pp 345–422.

    Google Scholar 

  • Burnstock G (1981) Neurotransmitters and trophic factors in (1987) the autonomic nervous system. J Physiol 313:1–35.

    PubMed  CAS  Google Scholar 

  • Burnstock G (1986) The changing face of autonomic neurotransmission. Acta Physiol Scand 126:67–91.

    Article  PubMed  CAS  Google Scholar 

  • Burnstock G, Cocks T, Crowe R, Kasakov L (1978a) Purinergic innervation of the guinea pig urinary bladder. Br J Pharmacol 63:125–138.

    PubMed  CAS  Google Scholar 

  • Burnstock G, Cocks T, Kasakov L, Wong HK (1978b) Direct evidence for ATP release from non-adrenergic, non-cholinergic (“purinergic”) nerves in the guinea pig taenia coli and bladder. Eur J Pharmacol 49:145–149.

    Article  PubMed  CAS  Google Scholar 

  • Caine M (1984) The pharmacology of the lower urinary tract musculature. In: Chisholm GD, Williams DI (eds) Scientific foundations of urology, 2nd edn. Heinemann, London, pp 433–442.

    Google Scholar 

  • Callahan SM, Creed KE (1986) Non-cholinergic neurotransmission and the effects of peptides on the urinary bladder of guinea pigs and rabbits. J Physiol 374:103–115.

    PubMed  CAS  Google Scholar 

  • Cardozo L, Stanton S, Robinson H, Hole D (1980) Evaluation of flurbiprofen in detrusor instability. Br Med J 280:281–282.

    Article  PubMed  CAS  Google Scholar 

  • Cassell JF, Clark AL, McLachlan EM (1986) Characteristics of phasic and tonic sympathetic ganglion cells in the guinea pig. J Physiol 372:457–484.

    PubMed  CAS  Google Scholar 

  • Craggs MD, Stephenson JD (1981) Sympathetic facilitation of parasympathetic pathways to the urinary bladder. J Physiol 319:90–91P.

    Google Scholar 

  • de Groat WC (1975) Nervous control of the urinary bladder of the cat. Brain Res 87:201–211.

    Article  PubMed  Google Scholar 

  • de Groat WC (1976) Mechanisms underlying the recurrent inhibition of the sacral parasympathetic outflow to the urinary bladder. J Physiol 257:503–514.

    PubMed  Google Scholar 

  • de Groat WC, Lalley PM (1972) Reflex firing in the lumbar sympathetic outflow to activation of vesical afferent fibres. J Physiol 226:289–309.

    PubMed  Google Scholar 

  • de Groat WC, Ryall RW (1968) Recurrent inhibition in sacral parasympathetic pathways to the bladder. J Physiol 196:579–591.

    PubMed  Google Scholar 

  • de Groat WC, Saum WR (1972) Sympathetic inhibition of the urinary bladder and of pelvic ganglionic transmission in the cat. J Physiol 220:297–314.

    PubMed  Google Scholar 

  • de Groat WC, Saum WR (1976) Synaptic transmission in parasympathetic ganglia in the urinary bladder in the cat. J Physiol 256:137–158.

    Google Scholar 

  • de Groat WC, Nadelhaft I, Milne RJ, Booth AM, Morgan C, Thor K (1981) Organisation of the sacral parasympathetic reflex pathways to the urinary bladder and large intestine. J Auton Nerv Syst 3:135–160.

    Article  PubMed  Google Scholar 

  • de Groat WC, Booth AM, Milne RJ, Roppolo JR (1982) Parasympathetic preganglionic neurons in the sacral spinal cord. J Auton Nerv Syst 5:23–13.

    Article  PubMed  Google Scholar 

  • de Groat WC, Kawatani M, Hisamitsu T, Lowe I, Morgan C, Roppolo J, Booth AM, Nadelhaft I, Kuo D, Thor K (1983) The role of neuropeptides in the sacral autonomic reflex pathways of the cat. J Auton Nerv Syst 7:339–350.

    Article  PubMed  Google Scholar 

  • Denny-Brown D, Robertson EG (1933) On the physiology of micturition. Brain 56:149–190.

    Article  Google Scholar 

  • de Sy W, Lacroix E, Leusen I (1974) An analysis of the urinary bladder response to hypogastric nerve stimulation in the cat. Invest Urol 11:508–516.

    PubMed  Google Scholar 

  • Downie JW, Dean DM (1977) The contribution of cholinergic postganglionic neurotransmission to contractions of the rabbit detrusor. J Pharmacol 203:417–425.

    CAS  Google Scholar 

  • Downie JW, Champion JA, Nance DM (1984) A quantitative analysis of the afferent and extrinsic efferent innervation of specific regions of the bladder and urethra in the cat. Brain Res Bull 12:735–740.

    Article  PubMed  CAS  Google Scholar 

  • Eccles JC, Fatt P, Koketsu K (1954) Cholinergic and inhibitory synapses in a pathway from motor axon collaterals to moto- neurones. J Physiol 126:524–562.

    PubMed  CAS  Google Scholar 

  • Elbadawi A, Schenk EA (1968) A new theory of the innervation of bladder musculature. Part 1. Morphology of the intrinsic vesical innervation apparatus. J Urol 99:585–587.

    CAS  Google Scholar 

  • Elbadawi A, Schenk EA (1974) A new theory of the innervation of bladder musculature, part 4. Innervation of the vesicourethral junction and external urethral sphincters. J Urol. 111:613–615.

    PubMed  CAS  Google Scholar 

  • Ek, A, Alm P, Andersson K-E, and Persson CG A (1977) Adrenergic and cholinergic nerves of the human urethra and urinary bladder. Acta Physiol Scand 99:345–352.

    Article  PubMed  CAS  Google Scholar 

  • Ek A, Andersson K-E, Ulmsten U (1978) The effects of norephedine and bethanecol on the human urethral closure pressure profile. Scand J Urol Nephrol 12:97–104.

    Article  PubMed  CAS  Google Scholar 

  • Elliot TR (1907) The innervation of the bladder and the urethra. J Physiol 35:367–445.

    Google Scholar 

  • Feher E, Vajda J, Csanyi K (1980) Quantitative analysis for innervation of the smooth muscle cells of the wall of the urinary bladder. J Auton Nerv Syst 2:71–80.

    Article  PubMed  CAS  Google Scholar 

  • Floyd K, Hick VE, Morrison JFB (1982) The influence of visceral mechanoreceptors on sympathetic efferent discharge in the cat. J Physiol 323:65–75.

    PubMed  CAS  Google Scholar 

  • Fowler CJ, Kirby RS, Harrison MJG, Milroy EJG, Turner-Warwick R (1984) Individual motor unit analysis in the diagnosis of disorders of urethral sphincter innervation. J Neurol Neurosurg Psychiatry 47:637–641.

    Article  PubMed  CAS  Google Scholar 

  • Fränkl-Hochwart LV, Frölich A (1904) Über die cortikale Innervation der Harnblase. Neurol Zentralbl (Leipzig) 23:646 655.

    Google Scholar 

  • Gabella G (1976) Structure of the autonomic nervous system. Chapman and Hall, London, p214.

    Book  Google Scholar 

  • Garry RC, Roberts TDM, Todd JK (1959) Reflexes involving the external urethral sphincter in the cat. J Physiol 149:653–665.

    PubMed  CAS  Google Scholar 

  • Gibson SJ, Polak JM, Anand P, Blank MA, Morrison JFB, Kelly JS, Bloom SR (1984a) The distribution and origin of VIP in the spinal cord of six mammalian species. Peptides 5:201–207.

    Article  PubMed  CAS  Google Scholar 

  • Gibson SJ, Polak JM, Bloom SR, Sabate IM, Mulderry PM, Ghatei MA, McGregor GP, Morrison, JFB, Kelly JS, Evans RM, Rosenfield MG (1984b) Calcitonin gene-related peptide immunoreactivity in the spinal cord of man and eight other species. J Neurosci 4:3101–3111.

    PubMed  CAS  Google Scholar 

  • Gibson SJ, Polak JM, Anand P, Blank MA, Yiangou Y, Su HC, Terenghi G, Katagiri T, Morrison JFB, Lumb BM, Inyama C, Bloom SR (1986) A VIP/PHI-containing pathway links urinary bladder and sacral spinal cord. Peptides 7 (Suppl 1): 205–219.

    Article  PubMed  CAS  Google Scholar 

  • Gonella J, Bouvier M, Blanquet F (1987) The extrinsic innervation of small and large intestines, and of related sphincters. Physiol Rev (in press).

    Google Scholar 

  • Gosling J A, Dixon JS, Lendon KG (1977) The autonomic innervation of the human male and female bladder neck and proximal urethra. J Urol 118:302–305.

    PubMed  CAS  Google Scholar 

  • Griffith WH, Gallagher JP, Shinnick-Gallagher P (1980) An intracellular investigation of the cat vesical pelvic ganglia. J Neurophysiol 43:343–354.

    PubMed  Google Scholar 

  • Hamberger B, Norberg KA (1965) Adrenergic synaptic terminals and nerve cells in bladder ganglia of the cat. Int J Neuropharmacol 4:41–45.

    Article  PubMed  CAS  Google Scholar 

  • Henderson VE, Roepke MH (1934) The role of acetylcholine in bladder contractile mechanisms and in parasympathetic ganglia. J Pharmacol Exp Ther 51:97–111.

    CAS  Google Scholar 

  • Hicks RM (1976) The mammalian urinary bladder: an accommodating organ. Biol Rev 50:215–246.

    Article  Google Scholar 

  • Hills J, Meldrum L, Klarskov P, Burnstock G (1984) A novel non-adrenergic, non-cholinergic nerve-mediated relaxation of the pig bladder neck: an examination of possible neurotransmitter candidates. Eur J Pharmacol 90:287–293.

    Article  Google Scholar 

  • Hodson N (1965) Sympathetic nerves and reproductive organs in the male rabbit. J Reprod Fertil 10:209–220.

    Article  PubMed  CAS  Google Scholar 

  • Hokfelt T, Everett B, Meister B, Melander T, Schalling M, Johansson O, Lundberg JM, Hulting A-L, Werner S, Cuello C, Hemmings H, Ouimei C, Walaas I, Greengard P, Goldstein M (1986) Neurons with multiple messengers, with special reference to neuroendocrine systems. Recent Prog Horm Res 42:1–70.

    PubMed  CAS  Google Scholar 

  • Hoyle CHV, Burnstock G (1985) Atropine resistant excitatory junction potentials in rabbit bladder are blocked by a,b- methylene ATP. Eur J Pharmacol 114:239–240.

    Article  PubMed  CAS  Google Scholar 

  • Hulsebosch CE, Coggeshall RE (1982) An analysis of the axon populations in the nerves to the pelvic viscera in the rat. J Comp Neurol 211:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Jan LY, Jan YN (1982) Peptidergic transmission in sympathetic ganglia of the frog. J Physiol 327:219–246.

    PubMed  CAS  Google Scholar 

  • Janig W (1986) Spinal cord integration of visceral sensory systems and sympathetic nervous system reflexes. In: Cervero F, Morrison JFB (eds) Visceral sensation. Elsevier, Amsterdam, pp 255–277 (Progress in brain research, vol 67).

    Chapter  Google Scholar 

  • Janig W, McLachlan E (1987) Organisation of the lumbar sympathetic and afferent supply of colon and pelvic organs. Physiol Rev (in press).

    Google Scholar 

  • Jankowska E, Padel Y, Zarzecki P (1978) Crossed disynaptic inhibition of sacral motoneurones. J Physiol 285:425–444.

    PubMed  CAS  Google Scholar 

  • Johns A (1979) The effect of vasoactive intestinal polypeptide on the urinary bladder and taenia coli of the guinea pig. J Physiol Pharmacol 57:106–108.

    Article  CAS  Google Scholar 

  • Johns A (1983) Alpha- and beta-adrenergic and muscarinic cholinergic binding sites in the bladder and urethra of the rabbit. Can J Physiol Pharmacol 61:61–66.

    Article  PubMed  CAS  Google Scholar 

  • Johnson RH, Spalding JMK (1974) Disorders of the autonomic nervous system. Blackwell, Oxford, p 300.

    Google Scholar 

  • Jule Y, Szurszewski JH (1983) Electrophysiology of neurones of the inferior mesenteric ganglion of the cat. J Physiol 344:277–292.

    PubMed  CAS  Google Scholar 

  • Jule Y, Krier J, Szurszewski JH (1983) Patterns of innervation of neurones in the inferior mesenteric ganglion of the cat. J Physiol 344:293–304.

    PubMed  CAS  Google Scholar 

  • Kawatani M, de Groat WC (1982) Enephalinergic inhibition in parasympathetic ganglia of the cat urinary bladder. Soc Neurosci Abstr 8:552.

    Google Scholar 

  • Kawatani M, Lowe IP, Booth AM, Backes MG, Erdman SL, de Groat WC (1983) The presence of leucine-enkephalin in the sacral preganglionic pathway to the urinary bladder of the cat. Neurosci Lett 39:143–148.

    Article  PubMed  CAS  Google Scholar 

  • Kawatani M, Rutigliano M, de Groat WC (1985) Selective facilitatory effect of vasoactive intestinal polypeptide (VIP) on muscarinic firing in vesical ganglia of the cat. Brain Res 336:223–234.

    Article  PubMed  CAS  Google Scholar 

  • Klarskov P, Gerstenberg T, Hald T (1984) Vasoactive intestinal polypeptide influence on the lower urinary tract smooth muscle from human and pig. J Urol 131:1000–1004.

    PubMed  CAS  Google Scholar 

  • Kreiss K, Wegman DH, Niles CA, Siroky MB, Krane RJ, Feldman RG (1980) Neurological dysfunction of the bladder in workers exposed to dimethylaminopropionitrile. J Am Med Assoc 243:741–745.

    Article  CAS  Google Scholar 

  • Kreulen DL, Peters S (1986) Non-cholinergic transmission in a sympathetic ganglion of the guinea pig elicited by colon distension. J Physiol 374:315–334.

    PubMed  CAS  Google Scholar 

  • Kuo DC, Hisamitsu T, de Groat WC (1984) A sympathetic projection from sacral paravertebral ganglia to the pelvic nerve and to postganglionic nerves on the surface of the urinary bladder and large intestine of the cat. J Comp Neurol 226:76–86.

    Article  PubMed  CAS  Google Scholar 

  • Langley JN, Anderson HK (1895a) On the innervation of the pelvic and adjoining viscera. Part I. The lower portion of the intestine. J Physiol 18:67–105.

    PubMed  CAS  Google Scholar 

  • Langley JN, Anderson HK (1895b) On the innervation of the pelvic and adjoining viscera. Part II. The bladder. J Physiol 19:71–84.

    PubMed  CAS  Google Scholar 

  • Langley JN, Anderson HK (1895c) On the innervation of the pelvic and adjoining viscera. Part IV. The internal generative organs. J Physiol 19:122–130.

    Google Scholar 

  • Langley JN, Anderson HK (1895d) On the innervation of the pelvic and adjoining viscera. Part V. Position of the nerve cells on the course of the efferent nerve fibres. J Physiol 19:131–139.

    Google Scholar 

  • Larsson B (1983) Demonstration of alpha-adrenoceptors in the rabbit bladder base and urethra with H3-dihydroergocryptine ligand binding. Acta Pharmacol Toxicol 52:188–194.

    Article  CAS  Google Scholar 

  • Lepor H, Kuhar MJ (1984) Characterisation of muscarinic cholinergic receptor binding in the vas deferens, bladder, prostate and penis of the rabbit. J Urol 132:392–396.

    PubMed  CAS  Google Scholar 

  • Levin RM, Wein AJ (1979) Quantitative analysis of alpha and beta adrenergic receptor densities in the lower urinary tract of the dog and rabbit. Invest Urol 17:75–77.

    PubMed  CAS  Google Scholar 

  • Levin RM, Wein AJ (1981) Effect of vasoactive intestinal polypeptide on the contractility of the rabbit urinary bladder. Urol Res 9:217–218.

    Article  PubMed  CAS  Google Scholar 

  • Lewis SA (1986) The mammalian urinary bladder: it’s more than accommodating. News Physiol Sci 1:61–65.

    Google Scholar 

  • Love JA, Szurszewski JH (1985) Effects of vasoactive intestinal polypeptide on neurons of the guinea pig inferior mesenteric ganglion. Fed Proc 44:1718.

    Google Scholar 

  • Lundberg JM, Hokfelt T (1983) Coexistence of peptides and classical neurotransmitters. Trends Neurosci 6:325–333.

    Article  CAS  Google Scholar 

  • Lundberg JM, Hokfelt T, Schultzberg M, Uvnas-Wallensten K, Kohler L, Said S (1979) Occurrence of VIP-like immunoreactivity in cholinergic neurones of the cat: evidence from combined immuno-histochemistry and acetylcholinesterase staining. Neuroscience 4:1539–1559.

    Article  PubMed  CAS  Google Scholar 

  • Mackel R (1979) Segmental and descending control of the external urethral and anal sphincters in the cat. J Physiol 294:105–122.

    PubMed  CAS  Google Scholar 

  • Mackenzie I, Burnstock G (1984) Neuropeptide action on the guinea pig bladder: a comparison with the effects of field stimulation and ATP. Eur J Pharmacol 105:85–94.

    Article  PubMed  CAS  Google Scholar 

  • Maggi CA, Santicioli P, Borsini F, Giuliani S, Meli A (1986) The role of capsaicin-sensitive innervation of the rat urinary bladder in the activation of micturition reflex. Naunyn- Schmiedebergs Arch Pharmacol 332:276–283.

    Article  PubMed  CAS  Google Scholar 

  • Martin AR, Pilar G (1963) Dual mode of synaptic transmission in the avian ciliary ganglion. J Physiol 168:443–163.

    PubMed  CAS  Google Scholar 

  • Melzak J, Porter NH (1964) Studies of the reflex activity of the external sphincter ani in spinal man. Paraplegia 1:277–296.

    Article  PubMed  CAS  Google Scholar 

  • Minsky BD, Chlapowski FJ (1978) Morphometric analysis of the translocation of lumenal membrane between cytoplasm and cell surface of transitional epithelial cells during the expansion-contraction cycles of mammalian urinary bladder. J Cell Biol 77:685–697.

    Article  PubMed  CAS  Google Scholar 

  • Mooreville M, Fritz RW, Mulholland SG (1983) Enhancement of the bladder defense mechanism by an exogenous agent. J Urol 130:607–609.

    PubMed  CAS  Google Scholar 

  • Morgan C, Nadelhaft I, de Groat WC (1981) The distribution of visceral primary afferents from the pelvic nerve within Lissauer’s tract and the spinal gray matter and its relationship to the sacral parasympathetic nucleus. J Comp Neurol 201:415–440.

    Article  PubMed  CAS  Google Scholar 

  • Morrison JFB (1982) The neural control of the bladder. In: Bloom SR, Polak JM, Lindenlaub E (eds) Systemic role of regulatory peptides. Schattauer, Stuttgart, pp 381–396.

    Google Scholar 

  • Morrison JFB, Nimmo AJ, Whitaker EM (1986) The localization of beta-adrenoceptor subtypes in the rat urinary bladder. J Physiol 381:29P.

    Google Scholar 

  • Nadelhaft I, de Groat WC, Morgan C (1980) Location and morphology of parasympathetic preganglionic neurons in the sacral spinal cord of the cat revealed by retrograde axonal transport of horseradish peroxidase. J Comp Neurol 193:265–281.

    Article  PubMed  CAS  Google Scholar 

  • Nilsson S (1983) Autonomic nerve function in the vertebrates. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Nilvebant L, Sparf B (1983a) Muscarinic receptor binding in the guinea-pig urinary bladder. Acta Pharmacol Toxicol 52:30–38.

    Article  CAS  Google Scholar 

  • Nilvebrant L, Sparf B (1983b) Differences between binding affinities of some antimuscarinic drugs in the parotid gland and those in the urinary bladder and ileum. Acta Pharmacol Toxicol 53: 304–313.

    Article  CAS  Google Scholar 

  • Norlen L, Sundin T (1978) Alpha-adrenolytic treatment in patients with autonomous bladders. Acta Pharmacol Toxicol 43:31–34.

    Article  Google Scholar 

  • Otsuka M, Konishi S (1983) Substance P—the first peptide neurotransmitter? Trends Neurosci 6:317–320.

    Article  CAS  Google Scholar 

  • Parks AG, Swash M, Urich H (1977) Sphincter denervation in anorectal incontinence and rectal prolapse. Gut 18:656–665.

    Article  PubMed  CAS  Google Scholar 

  • Peters S, Kruelen DL (1984) A slow EPSP in mammalian inferior mesenteric ganglion persists after in vivo capsaicin. Brain Res 303:186–189.

    Article  PubMed  CAS  Google Scholar 

  • Ranvier L (1874) De quelques faits relatifs à l’histologie et à la physiologie des muscles striés. Arch Physiol Norm Pathol 1:5–18.

    Google Scholar 

  • Risling M, Dahlsgaard C-J, Cukierman A, Cuello AC (1984) Electronmicroscopic and immunohistochemical evidence that unmyelinated ventral root axons make U-turns or enter the spinal pia mater. J Comp Neurol 225:53–63.

    Article  PubMed  CAS  Google Scholar 

  • Santicioli P, Maggi CA, Meli A (1985) The effect of capsaicin pretreatment on the cystometrograms of urethane anaesthetised rats. J Urol 133:700–703.

    PubMed  CAS  Google Scholar 

  • Sibley GNA (1984) A comparison of spontaneoous and nerve mediated activity in bladder muscle from man, pig and rabbit. J Physiol 354:431–444.

    PubMed  CAS  Google Scholar 

  • Simmonds WF, Booth AM, Thor KB, Ostrowski NL, Nagel JR, de Groat WC (1983) Parasympathetic ganglia: naloxone antagonises inhibition by leucine-enkephalin and GABA. Brain Res 271:365–370.

    Article  Google Scholar 

  • Sjogren C, Andersson K-E, Husted S, Mattiasson A, Moller-Madsen B (1982) Atropine-resistance of the transmurally stimulated, isolated human bladder. J Urol 128:1368–1371.

    PubMed  CAS  Google Scholar 

  • Sjôstrand NO (1965) The adrenergic innervation of the vas deferens and the necessary male genital glands. Acta Physiol Scand 65: (suppl 257) 1–82.

    Google Scholar 

  • Sundin T (1972) Reinnervation of the urinary bladder. Scand J Urol Nephrol [Suppl] 17:1–25.

    Google Scholar 

  • Sundin T, Petersén I (1975) Cystometry and simultaneous electromyography from the striated urethral and anal sphincters and from levator ani. Invest Urol 13:40–46.

    PubMed  CAS  Google Scholar 

  • Swash M (1982) Early and late components in the human anal reflex. J Neurol Neurosurg Psychiatry 45:767–769.

    Article  PubMed  CAS  Google Scholar 

  • Taira N (1972) The autonomic pharmacology of the bladder. Annu Rev Pharmacol 12:197–208.

    Article  PubMed  CAS  Google Scholar 

  • Thomas DG (1984) The urinary tract following spinal cord injury. In: Chisholm GD, Williams DI (eds) Scientific foundations of urology. Heineman, London, pp 431–433.

    Google Scholar 

  • Torrens M J (1978) Urethral sphincteric responses to stimulation of the sacral nerves in the human female. Urol Int 33:22–26.

    Article  Google Scholar 

  • Ulmsten U, Sjôberg NO, Aim P, Andersson K-E, Owman C, Walles B (1977) Functional role of an adrenergic sphincter in the female urethra of the guinea pig. Acta Obstet Gynecol Scand 56:387–390.

    Article  PubMed  CAS  Google Scholar 

  • Wamsley JK, Gehlert DR, Roeske WR, Yamamura HI (1984) Muscarinic antagonist binding site heterogenicity as evidenced by autoradiography after direct labelling with 3H- QNB and 3H-pirenzepine. Life Sci 34:1395–1402.

    Article  PubMed  CAS  Google Scholar 

  • Wein AJ (1984) Pharmacology of the bladder and urethra. In: Mundy AR, Stephenson TP, Wein AJ (eds) Urodynamics. Churchill Livingstone, Edinburgh, pp 26–41.

    Google Scholar 

  • Womack NR, Morrison JFB, Williams NS (1986a) Impaired recruitment of the pelvic floor musculature by intra-abdominal pressure in faecal incontinence. Gut 27:A624.

    Google Scholar 

  • Womack NR, Morrison JFB, Williams NS (1986b) The role of pelvic floor denervation in the aetiology of idiopathic faecal incontinence. Br J Surg 404–407.

    Google Scholar 

  • Wright AL, Williams NS, Gibson JS, Neal DE, Morrison JFB (1985) Electrically evoked activity in the human external anal sphincter. Br J Surg 72:38–41.

    Article  PubMed  CAS  Google Scholar 

  • Zuckerkandl E (1893) In: Eulenberg’s Realenzyhlopâdie der gesammten Heilkunde, 3rd edn, vol III, p 331.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Morrison, J.F.B. (1987). The Functions of Efferent Nerves to the Lower Urinary Tract. In: Torrens, M., Morrison, J.F.B. (eds) The Physiology of the Lower Urinary Tract. Springer, London. https://doi.org/10.1007/978-1-4471-1449-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1449-9_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1451-2

  • Online ISBN: 978-1-4471-1449-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics