Skip to main content

The Arterial-Alveolar Nitrogen Difference for the Assessment of Ventilation-Perfusion Mismatch

  • Chapter
Shock and the Adult Respiratory Distress Syndrome

Part of the book series: Current Concepts in Critical Care ((CRITICAL CARE))

  • 80 Accesses

Abstract

Impaired pulmonary gas exchange leading to arterial hypoxaemia is one of the most common problems in critically ill patients. This arterial hypoxaemia and, hence, an increased alveolar-arterial oxygen partial pressure difference (D(A-a)O2)—at a given fraction of inspired oxygen (FiO2) and a stable cardiac output—are mainly attributed to ventilation-perfusion mismatch (low VA/Q areas) and direct intrapulmonary right-to-left shunting. The discrimination of these two components has been of interest as their causes and treatment may be different (Bendixen 1964; Pesenti et al. 1983). Berggren (1942) tried to separate the two effects by calculating the venous admixture (QVA/QT) with and without nitrogen present in the inspired gas. In practice this method yielded contradictory results, both enhanced and decreased QVA/QT values being found (Quan et al. 1980; Shapiro et al. 1980; Suter et al. 1985), and evidence for absorption collapse of alveoli being observed (Dantzker et al. 1975; Wagner et al. 1974a). Moreover, increasing the oxygen tension in mixed venous blood by pure oxygen breathing may increase the right-to-left shunt (Bishop and Cheney 1983) by reversing hypoxic pulmonary vasoconstriction in unventilated lung areas (Domino et al. 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bendixen H (1964) Atelectasis and shunting. Anesthesiology 25:595–596.

    Article  PubMed  CAS  Google Scholar 

  • Berggren S (1942) The oxygen deficit of arterial blood caused by non-ventilating parts of the lung. Acta Physiol Scand [Suppl] 11:1–92.

    Google Scholar 

  • Bishop M, Cheney F (1983) Effects of pulmonary blood flow and mixed venous O2 tension on gas exchange in dogs. Anesthesiology 58:130–135.

    Article  PubMed  CAS  Google Scholar 

  • Canfield R, Rahn H (1957) Arterial-alveolar N2 gas pressure difference due to ventilation perfusion variation. J Appl Physiol 10:165–172.

    PubMed  CAS  Google Scholar 

  • Dantzker D, Wagner P, West J (1975) Instability of lung units with low VA/Q ratios during O2 breathing. J Appl Physiol 38:886–895.

    Google Scholar 

  • Domino K, Wetstein L, Glasser S et al. (1983) Influence of mixed venous oxygen tension (PvO2) on blood flow to atelectatic lung. Anesthesiology 59:428–434.

    Article  PubMed  CAS  Google Scholar 

  • Farhi L, Edwards A, Homma T (1963) Determination of dissolved N2 in blood by gas chromatography and (a-A) N2 difference. J Appl Physiol 18:97–106.

    PubMed  CAS  Google Scholar 

  • Klocke F, Rahn H (1960) The arterial-alveolar inert gas pressure difference. In: Studies in Pulmonary Physiology. Wright Air Development Center Technical Report 60–1, pp 66–90.

    Google Scholar 

  • Klocke F, Rahn H (1961a) A method for determining inert gas (“N2”) solubility in urine. J Clin Invest 40:279–285.

    Article  PubMed  CAS  Google Scholar 

  • Klocke F, Rahn H (1961b) The arterial-alveolar inert gas (“N2”) difference in normal and emphysematous subjects by the analysis of urine. J Clin Invest 40:286–294.

    Article  PubMed  CAS  Google Scholar 

  • Lenfant C (1963) Measurement of ventilation/perfusion distribution with alveolar-arterial differences. J Appl Physiol 18:1090–1094.

    PubMed  CAS  Google Scholar 

  • Lenfant C (1965) Effect of high FiO2 on measurement of ventilation perfusion distribution in man at sea level. Ann NY Acad Sci 121:797–808.

    Article  PubMed  CAS  Google Scholar 

  • Markello R, Winter P, Olszowka A (1972) Assessment of ventilation-perfusion inequalities by arterialalveolar nitrogen differences in intensive care patients. Anesthesiology 37:4–15.

    Article  PubMed  CAS  Google Scholar 

  • Markello R, Schuder R, Border J (1974) Arterio-alveolar N2 differences documenting ventilation-perfusion mismatching following trauma. J Trauma 14:423–426.

    Article  PubMed  CAS  Google Scholar 

  • Pesenti A, Riboni A, Marcolin R, Gattinoni I (1983) Venous admixture (QVA/QT) and true shunt (QS/QT) in ARF patients: effects of PEEP at constant F1O2. Intensive Care Med 9:307–311.

    Article  PubMed  CAS  Google Scholar 

  • Quan S, Kronberg G, Schlobohm R, Feeley T, Don H, Lister G (1980) Changes in venous admixture with alterations of inspired oxygen concentration. Anesthesiology 52:477–482.

    Article  PubMed  CAS  Google Scholar 

  • Rahn H, Farhi L (1964) Ventilation, perfusion and gas exchange—the VA/Q concept. In: Handbook of physiology, section 3, Respiration I. American Physiological Society, Washington DC, pp 735–766.

    Google Scholar 

  • Shapiro B, Cane R, Harrison R, Steiner M (1980) Changes in intrapulmonary shunt with administration of 100% oxygen. Chest 77:138–141.

    Article  PubMed  CAS  Google Scholar 

  • Suter P, Fairley B, Schlobom R (1975) Shunt, lung volume and perfusion during short periods of ventilation with oxygen. Anesthesiology 43:617–627.

    Article  PubMed  CAS  Google Scholar 

  • Van Slyke D, Neill J (1924) The determination of gases in the blood and other solutions by vacuum extraction and manometric measurement. J Biol Chem 61:523–573.

    Google Scholar 

  • Wagner P, Saltzmann H, West J (1974a) Measurement of continuous distributions of ventilation-perfusion ratios. J Appl Physiol 36:588–599.

    PubMed  CAS  Google Scholar 

  • Wagner P, Laravuso R, Uhl R, West J (1974b) Continuous distributions of ventilation-perfusion ratios in normal subjects breathing air and 100% O2. J Clin Invest 54:54–68.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Radermacher, P., Falke, K.J. (1988). The Arterial-Alveolar Nitrogen Difference for the Assessment of Ventilation-Perfusion Mismatch. In: Kox, W., Bihari, D. (eds) Shock and the Adult Respiratory Distress Syndrome. Current Concepts in Critical Care. Springer, London. https://doi.org/10.1007/978-1-4471-1443-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1443-7_10

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1445-1

  • Online ISBN: 978-1-4471-1443-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics