Skip to main content

Fluid Flux Across the Microvascular Endothelium

  • Chapter
Shock and the Adult Respiratory Distress Syndrome

Part of the book series: Current Concepts in Critical Care ((CRITICAL CARE))

  • 75 Accesses

Abstract

Our understanding of the forces governing the movement of fluid into and out of the vascular compartment owes much to the observations of Starling at the end of the nineteenth century (Starling 1894, 1896). The history of the development of the Starling Hypothesis and its subsequent mathematical formulation has been reviewed in successive editions of the Handbook of Physiology (Landis and Pappenheimer 1963; Michel 1984).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arturson G (1979) Microvascular permeability to macromolecules in thermal injury. Acta Physiol Scand [Suppl] 463:111–122.

    CAS  Google Scholar 

  • Becker CG, Murphy GE (1969) Demonstration of contractile protein in endothelium and cells of heart valves, endocardium, intimai arteriosclerotic plaques and Aschoff bodies of rheumatoid heart disease. Am J Pathol 55:1–37.

    PubMed  CAS  Google Scholar 

  • Bert JL, Pearce RH (1984) The interstitium and microvascular exchange. In: Renkin EM, Michel CC (eds) Handbook of physiology, sect 2, Cardiovascular system, vol IV, Microcirculation part 1. Waverley Press, Baltimore, Maryland, pp 521–547.

    Google Scholar 

  • Brace RA (1981) Progress towards resolving the controversy of positive versus negative interstitial fluid pressure. Circ Res 49:281–297.

    PubMed  CAS  Google Scholar 

  • Bruns RR, Palade GE (1968) Studies on blood capillaries. IL Transport of ferritin molecules across the wall of muscle capillaries. J Cell Biol 37:277–299.

    Article  PubMed  CAS  Google Scholar 

  • Bundgaard M, Frokjaer-Jensen J (1982) Aspects of the ultrastructure of terminal blood vessels: a quantitative study of consecutive segments of the frog mesenteric microvasculature. Microvasc Res 23:1–30.

    Article  PubMed  CAS  Google Scholar 

  • Bundgaard M, Frokjaer-Jensen J, Crone C (1979) Endothelial plasmalemmal vesicles as elements in a system of branching invaginations from the cell surface. Proc Natl Acad Sci USA 76:6439–6442.

    Article  PubMed  CAS  Google Scholar 

  • Casley-Smith JR (1983) The structure and function of blood vessels, interstitial tissues and lymphatics. In: Foldi M, Casley-Smith JR (eds) Lymphangiology. Schattauer Verlag, Stuttgart New York, pp 27–164.

    Google Scholar 

  • Clough GE, Michel CC (1981) The role of vesicles in the transport of ferritin through frog endothelium. J Physiol (Lond) 315:127–142.

    CAS  Google Scholar 

  • Clough GE, Smaje LH (1978) Simultaneous measurement of pressure in the interstitium and terminal lymphatics of the cat mesentery. J Physiol (Lond) 283:457–468.

    CAS  Google Scholar 

  • Curry FE (1984) Mechanics and thermodynamics of transcapillary exchange. In: Renkin EM, Michel CC (eds) Handbook of physiology, sect 2, Cardiovascular system, vol IV, Microcirculation part 1. Waverley Press, Baltimore, Maryland, pp 309–374.

    Google Scholar 

  • Curry FE, Michel CC (1980) A fibre matrix model of capillary permeability. Microvasc Res 20:96–99.

    Article  PubMed  CAS  Google Scholar 

  • Diana JN, Keith BJ, Fleming BP (1980) Influence of macromolecules on capillary filtration coefficients in isolated dog hindlimbs. Microvasc Res 20:106–107.

    Google Scholar 

  • Epstein M (1978) Renal effects of head-out water immersion in man: implications for an understanding of volume homeostasis. Physiol Rev 58:529–581.

    PubMed  CAS  Google Scholar 

  • Frokjaer-Jensen J (1980) Three-dimensional organization of plasmalemmal vesicles in endothelial cells. An analysis by serial sectioning of frog mesenteric capillaries. J Ultrastruct Res 73:9–20.

    Article  PubMed  CAS  Google Scholar 

  • Gamble J (1978) The effects of bovine serum albumin on the vascular permeability of the perfused rat mesentery. J Physiol (Lond) 285:15–16P.

    Google Scholar 

  • Gamble J (1983) Influence of pH on capillary filtration coefficient of rat mesenteries perfused with solutions containing albumin. J Physiol (Lond) 339:505–518.

    CAS  Google Scholar 

  • Guyton AC (1965) Interstitial fluid pressure. II. Pressure-volume curves of interstitial space. Circ Res 16:452–460.

    PubMed  CAS  Google Scholar 

  • Guyton AC, Taylor AE, Granger HJ (1975) Circulatory physiology, vol II, Dynamics and control of the body fluids. WB Saunders, Philadelphia London Toronto.

    Google Scholar 

  • Hansen AT (1961) A self recording electronic Osmometer for quick measurements of colloid osmotic pressure in small samples. Acta Physiol Scand 53:197–213.

    Article  PubMed  CAS  Google Scholar 

  • Hinghofer-Szalkay H, Moser M (1986) Fluid and protein shifts after postural changes in man. Am J Physiol 250:H68–H75.

    PubMed  CAS  Google Scholar 

  • Knight AD, Levick JR (1983) Time-dependence of the pressure-volume relationship in the synovial cavity of the rabbit knee. J Physiol (Lond) 335:139–152.

    CAS  Google Scholar 

  • Landis EM, Pappenheimer JR (1963) Exchange of substances through the capillary walls. In: Hamilton WF, Dow P (eds) Handbook of physiology, sect 2, Cardiovascular system, vol II American Physiological Society, Washington, DC, pp 961–1034.

    Google Scholar 

  • Lentz TL (1971) Cell fine structure. An atlas of drawings of whole-cell structure. WB Saunders, Philadelphia London Toronto.

    Google Scholar 

  • Levick JR, Smaje LH (1986) An analysis of the permeability of a fenestra. Microvasc Res 33:233–256.

    Article  Google Scholar 

  • Majno G, Shea SM, Leventhal M (1969) Endothelial contraction induced by histamine-type mediators. J Cell Biol 42:647–672.

    Article  PubMed  CAS  Google Scholar 

  • Michel CC (1984) Fluid movements through capillary walls. In: Renkin EM, Michel CC (eds), Handbook of physiology, sect 2, Cardiovascular system, vol IV, Microcirculation part 1. Waverley Press, Baltimore, Maryland, pp 375–409.

    Google Scholar 

  • Michel CC, Phillips ME (1985) The effects of bovine serum albumin and a form of cationised ferritin upon the molecular selectivity of the walls of single frog capillaries. Microvasc Res 29:190–203.

    Article  PubMed  CAS  Google Scholar 

  • Movat HZ (1984) Microcirculation in disseminated intravascular coagulation induced by endotoxins. In: Renkin EM, Michel CC (eds) Handbook of physiology, sect 2, Cardiovascular system, vol IV, Microcirculation part 1. Waverley Press, Baltimore, Maryland, pp 1047–1076.

    Google Scholar 

  • Palade GE, Simionescu M, Simionescu N (1979) Structural aspects of the permeability of the microvascular endothelium. Acta Physiol Scand [Suppl] 463:11–32.

    CAS  Google Scholar 

  • Pappenheimer JR, Sotto-Rivera A (1948) Effective osmotic pressure of the plasma proteins and other quantities associated with the capillary circulation in the hind-limb of cats and dogs. Am J Physiol 152:471–491.

    PubMed  CAS  Google Scholar 

  • Rayman G, Williams SA, Gamble J, Tooke JE (1987) A study of the factors governing fluid filtration in the feet of diabetic and normal subjects. Int J Microcirc Clin Exp (submitted for publication).

    Google Scholar 

  • Renkin EM (1977) Multiple pathways of capillary permeability. Circ Res 41:735–743.

    PubMed  CAS  Google Scholar 

  • Rippe B, Folkow B (1977) Capillary permeability to albumin in normotensive and spontaneously hypertensive rats. Acta Physiol Scand 101:72–83.

    Article  PubMed  CAS  Google Scholar 

  • Rothschild MA, Waldmann T (eds) (1970) Plasma protein metabolism. Regulation of synthesis, distribution and degradation. Academic Press, New York.

    Google Scholar 

  • Simionescu M, Simionescu N (1984) Ultrastructure of the microvascular wall: functional correlations. In: Renkin EM, Michel CC (eds) Handbook of physiology, sect 2, Cardiovascular system, vol IV, Microcirculation part 1. Waverley Press, Baltimore, Maryland, pp 41–102.

    Google Scholar 

  • Simionescu N, Simionescu M, Palade GE (1972) Permeability of intestinal capillaries. Pathway followed by dextrans and glycogen. J Cell Biol 53:365–392.

    Article  PubMed  CAS  Google Scholar 

  • Starling EH (1894) The influence of mechanical factors on lymph production. J Physiol (Lond) 10:14–155.

    Google Scholar 

  • Starling EH (1896) On the absorption of fluid from connective tissue spaces. J Physiol (Lond) 19:312–326.

    CAS  Google Scholar 

  • Swayne GTG, Smaje LH (1986) Histamine can increase filtration coefficient without changing reflexion coefficient to albumin in single rat venules. Int J Microcirc Clin Exp 5:198.

    Google Scholar 

  • Taylor AE, Granger DN (1984) Exchange of macromolecules across the microcirculation. In: Renkin EM, Michel CC (eds) Handbook of physiology, sect 2, Cardiovascular system, vol IV, Microcirculation part 1. Waverley Press, Baltimore, Maryland, pp 467–520.

    Google Scholar 

  • Turner MR, Clough GE, Michel CC (1983) The effects of cationised ferritin upon filtration coefficients of single frog capillaries. Evidence that proteins in the endothelial cell coat influence permeability. Microvasc Res 25:205–222.

    Article  PubMed  CAS  Google Scholar 

  • Watson PD (1981) The effect of protein and dextran on capillary filtration coefficient in isolated cat hindlimb. Microvasc Res 21:261–262.

    Google Scholar 

  • Zweifach BW, Lipowski HH (1984) Pressure-flow relations in blood and lymph microcirculation. In: Renkin EM, Michel CC (eds) Handbook of physiology, sect 2, Cardiovascular system, vol IV, Microcirculation part 1. Waverley Press, Baltimore, Maryland, pp 251–308.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gamble, J. (1988). Fluid Flux Across the Microvascular Endothelium. In: Kox, W., Bihari, D. (eds) Shock and the Adult Respiratory Distress Syndrome. Current Concepts in Critical Care. Springer, London. https://doi.org/10.1007/978-1-4471-1443-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1443-7_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1445-1

  • Online ISBN: 978-1-4471-1443-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics